Experiment Report
 The Digital Multimeter

Name : \qquad
Name : \qquad
TA: \qquad
Section : \qquad
This write-up follows along with the Hands On section of the lab. It requires you to write down measurements, to do simple calculations and to answer questions. You should complete this report as you do the lab exercises.

VI. Hands On

a. Resistance [15 pts]

$1 \mathrm{~K} \Omega$ and $2^{\text {nd }}$ resistor
Measured resistance of a $1 \mathrm{~K} \Omega$ resistor
Measured resistance of the 2nd resistor
Predicted resistance of the series combination
Measured resistance of the series combination
Predicted resistance of the parallel combination
\qquad

Measured resistance of the parallel combination \qquad
Potentiometer
Measured resistance between the outside legs
What happened when the knob was turned while measuring the resistance between the two outside legs?

When you connect one outside leg and the middle leg to the DMM, does the resistance increase or decrease when you turn the knob clockwise?

What happens when you connect the DMM to the other outside leg and turn the knob clockwise?

b. DC Voltages [5 pts]

Power supply
Measured voltage across the power supply

c. DC Current [20 pts]

Power supply (V.L. $=5 \mathrm{~V}$, C.L. $=.2 \mathrm{~A}$) and $1 \mathrm{k} \Omega$ resistor
Measured resistance
Predicted current
Measured current

Power supply (Voltage $=10 \mathrm{~V}, \mathrm{C} . \mathrm{L} .=.1 \mathrm{~A})$ and 51Ω power resistor
Measured resistance
Predicted current
Measured current
Measured voltage across the resistor
Power supply (Voltage $=10 \mathrm{~V}, \mathrm{C} . \mathrm{L} .=.4 \mathrm{~A})$ and 51Ω power resistor Predicted current
Measured current
What is the minimum resistance you would use with a current limit of 0.1 A to have $\mathrm{V}=10 \mathrm{~V}$ still?

d. Measuring a Real Circuit [20 pts]

Predicted $V_{\text {AB }}$

Measured $V_{\text {AB }}$
Predicted $V_{B C}$
Measured $V_{B C}$
Predicted I
Measured I
\qquad
\qquad
\qquad
e. Circuits with Potentiometers [20 pts]

	pot value 1	pot value 2	pot value 3
Measured V_{AB}	-	-	-
Measured V_{BC}	-	-	
Measure Z	-		

What happens as the resistance of the pot is increased? \qquad

f. Current-Voltage (I-V) characteristics [20 pts]

Resistor
Plot an $\mathrm{I}_{\mathrm{T}} \mathrm{vs}$. V_{T} graph below

g. Black Boxes (20 pts Extra Credit)

Black box \#1:
Plot an I_{T} vs. V_{T} graph below

Draw a possible circuit for the black box:

What do you actually find in the box?

Black box \#2:
Plot an I_{T} vs. V_{T} graph below

Draw a possible circuit for the black box:

What do you actually find in the box?

```
Measured \(\mathrm{V}_{\mathrm{OC}}\)
Measured Isc
```

