
EE 42 
 

Homework #4 Solutions 
 
Problem 1: 
 

 
 
VOUT(0) = 0 V 
 
since for t < 0, the capacitor was not attached to 
a voltage source. 
 
At t = 0, the switch closes. 
 

 
Since we know that the capacitor has 0 V, 
by KVL, the 2 kΩ resistor must have 5 V 
as shown. 
 
By KCL, 
 
5 V / 2 kΩ = IOUT + 0 V / 8 kΩ 

 

IOUT(0) = 2.5 mA 
 

 
To find the time constant for the circuit, turn off the voltage source and find RTH with respect to 
capacitor terminals. 
 

The resistors are in parallel (NOT in series, 
imagine an ohmmeter attached to the 
terminals…). 
 
RTH = (1 / 2 kΩ + 1 / 8 kΩ)-1 = 1.6 kΩ 
 
RC = (1.6 kW)(100 nF) = 160 µs 
 
As t goes to infinity, the capacitor opens: 
 

The final value of IOUT is 0 A. 
 
IOUT(t) = 2.5 e-t/160 µs mA 
 
Maximum value:  2.5 mA (at t = 0) 
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To find the power absorbed by the resistors, we need to find their individual voltages or 
currents.  Finding VOUT(t) will help.  We already know VOUT(0) = 0 V and RC = 160 µs. 
The final value of VOUT  can be determined by the circuit as t goes to infinity. 

 
Since there is no current through the 
open-circuit capacitor, the resistors are 
effectively in series.  By voltage division, 
the 8 kΩ resistor has 4 V as shown.  
Thus, the final value of VOUT is 4 V. 
 
VOUT(t) = 4 –4 e-t/160 µs V 
 
 
 

 
P2kΩ = VI = V2 / R = (5 – (4 –4 e-t/160 µs))2 / 2000  W           Integral from t = 0 to infinity is infinity! 
 
P8kΩ = VI = V2 / R = (4 –4 e-t/160 µs)2 / 8000  W           Integral from t = 0 to infinity is infinity! 
 
So the total energy absorbed is infinite.  (Prof. Ross confused the direction of the switch and 
ended up asking a silly question!) 
 
Problem 2: 

 
 

a) When the circuit is in position “0”, 
the 4 V source and 2 kΩ resistor are 
disconnected.  The two 100 nF 
capacitors combine in series to 
make (1/(100 x 10-9)+1/(100 x 10-9))-1 
which is 50 nF.  The only resistance 
is 8 kΩ.   

            tP = (ln 2)(RC) = (ln 2)(8 kΩ)(50 nF) 
   =  277 µµµµs 

 
 

b) When the circuit is in position “1”, the 8 kW resistor and 100 nF capacitor on the right are 
disconnected.  The only capacitor is the 100 nF capacitor on the left, and the 2 kW 
resistor is the only resistance.   
tP = (ln 2)(RC) = (ln 2)(2 kΩ)(100 nF) = 139 µµµµs 

 
c) If the circuit has been in position “1” for a long 

time,  the capacitor will be acting like an open 
circuit (until the first switch occurs at t = 0).  Since 
zero current flows through an open circuit, the 
resistor carries 0 voltage and the capacitor gets 
all 4 V.  So Vout(0-) = Vout(0+) = 4 V. 
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At t = 0, the circuit switches for the first time.  The circuit 
will stay this way until t = 1 ms.  We know the initial 
condition, and need the final value and RC. 
 
Repeating the RC calculation from part a,  
RC = (8 kΩ)(50 nF) = 400 µµµµs. 
 
The final value is the value of Vout that would occur if we 
left the circuit this way indefinitely.  Eventually, the 
capacitors will act like open circuits.  This means that the 
resistor will have zero voltage (zero current flow).  So to 

make KVL work, the capacitors must have equal voltage.  The left capacitor starts out 
with 4 V x 100 nF worth of charge, and the right capacitor starts out discharged.  The left 
capacitor must give half of its charge to the right capacitor to make the voltages equal.  
So the final value of Vout is half of the initial value:  2 V. 
 
So for t = 0 to t = 1 ms, Vout(t) is: 
 
Vout(t) = 2 V + 2 e-t/400 µs V 
 
At t = 1 ms, the circuit switches back.  We can find the voltage on the capacitor just after 
switching by finding the voltage just before switching since capacitor voltage is 
continuous: 
 
Vout(1 ms) = 2 V + 2 e-1 ms/400 µs V = 2.16 V 
 
From our part b calculation, for this circuit, RC = (2 kΩ)(100 nF) = 200 µµµµs. 
 
When the circuit has been this way for a long time, the capacitor turns back into an open 
circuit, giving us again the circuit on the previous page.  The final value of Vout is 4 V. 
 
So for t = 1 ms and above, 
 
Vout(t) = 4 V +(2.16 – 4) e-(t-1ms)/200 µs V = 4 V – 1.84 e-(t-1ms)/200 µs V 
 
We may write the equations together as: 
 
  2 V + 2 e-t/400 µs V      for 0 ≤ t < 1 ms 
Vout(t) =        
  4 V – 1.84 e-(t-1ms)/200 µs V     for t ≥ 1 ms 
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Problem 4: 
 

A good first step in any simplification is to use a 
Karnaugh map to provide a simpler sum of products 
implementation. 
 
F = D + A·B·C + A·B·C 
 
 
 
 
 
 

 
a) Lowest cost means fewest number of chips used.  A good strategy is to minimize the 

number of different types of chips used by doing at least a partial NAND-NAND 
implementation of the sum-of-products we found.  Many possible answers—here is one. 

 
 
This requires two chips ($0.30): 
 
3 3-input NAND chip 
6 inverter chip 
 
We don’t have to use all the 
gates on the chip. 
 
The inverter is needed at the D 
input to properly convert from 
AND-OR to NAND-NAND. 
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b) There is really no systematic way to reduce the propagation delay of a circuit.  One could try 
to simplify the circuit using Boolean logic.  In this case, I can’t find a way to reduce the delay 
to less than 60 ns (3 gates), so the circuit from part a would be an acceptable answer. 

 
c) There is really no systematic way to find the circuit with the minimum number of gates.  The 

Karnaugh map gives us the simplest sum-of-products implementation, but maybe other 
types of implementations would be simpler.  We need to look at the function and see if we 
can simplify it. 

 

( ) ( ) CBADCBABADCBACBADF ⋅⊕+=⋅+⋅+=⋅⋅+⋅⋅+=  
 
The sum-of-products implementation was hiding an XNOR gate, which does the work of 
several AND/OR/NOT gates in this example.  This gives us a circuit with only 3 gates.   
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