EE 42

Homework \#6

Due Friday, May 7 at 4 pm in drop box

Problem 1:

Imagine that you are fabricating a CMOS inverter from scratch. You want your inverter to have a midpoint of 2.5 V when the supply voltage is 5 V . This means when the input is 2.5 V , the output should be 2.5 V , as shown.

Your fabrication process determines that:
$\mathrm{C}_{\mathrm{Ox}}=5 \mathrm{fF} / \mu \mathrm{m}^{2}$ for both PMOS and NMOS
$\mu_{\mathrm{n}}=500 \mathrm{~cm}^{2} /(\mathrm{Vs})$
$\mu_{\mathrm{p}}=400 \mathrm{~cm}^{2} /(\mathrm{Vs})$
$\mathrm{V}_{\mathrm{TH}(\mathrm{n})}=1 \mathrm{~V}$
$V_{T H(p)}=-1 \mathrm{~V}$
$\lambda_{n}=0.1 \mathrm{~V}^{-1}$
$\lambda_{p}=-0.1 \mathrm{~V}^{-1}$

You have already decided on the lengths of the transistors; $L_{n}=L_{p}=1.5 \mu \mathrm{~m}$.
With $\mathrm{W}_{\mathrm{n}}=10 \mu \mathrm{~m}$, what is the value of W_{p} (the width of the PMOS) needed for this midpoint?

Problem 2:

Find $\mathrm{V}_{\text {OUT }}$ for the circuit shown at right.
Assume the large-signal model for the diode, With $V_{F}=2 \mathrm{~V}$.
$W / L \mu_{n} C_{o x}=W / L \mu_{p} C_{o x}=1 \mathrm{~mA} / \mathrm{V}^{2}$
$\mathrm{V}_{\mathrm{TH}(\mathrm{n})}=1 \mathrm{~V}$
$V_{T H(p)}=-1 \mathrm{~V}$
$\lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=0 \mathrm{~V}^{-1}$

Problem 3:

Consider a CMOS NAND gate.

Suppose we attach n CMOS logic gate inputs to the output of this NAND gate (fanout of n).
What is the maximum value of n allowed if the worst-case propagation delay t_{p} through the NAND is not to exceed 100 ns ?
Note: The propagation delay varies with different input combinations. You need to find the worst-case combination.
$\mathrm{R}_{\mathrm{n}}=1 \mathrm{k} \Omega \quad \mathrm{R}_{\mathrm{p}}=3 \mathrm{k} \Omega \quad \mathrm{C}_{\mathrm{G}}=10 \mathrm{pF}$

Problem 4:

Let's explore how transistor design, through the choice of the transistor dimensions W and L , as well as the choice of power supply voltage V_{DD}, contributes to gate delay.
R_{n} and R_{p}, the pull-down/pull-up transistor resistances, are calculated in the following way:
R = average value of $\left(V_{D S} / I_{D}\right)$ over the time period 0 to t_{p} (during pull-up for PMOS or pull-down for NMOS)

In other words, average $V_{D S} / I_{D}$ from the start of the pull, when $V_{D S}= \pm V_{D D}$, to the halfway point of the pull, when $\mathrm{V}_{D S}= \pm \mathrm{V}_{D D} / 2$. During this time, V_{DS} is bigger in magnitude than $\mathrm{V}_{\mathrm{DD}} / 2$, so you can assume saturation mode (Why? Review our inverter analysis of Lecture 20 where we talked about the possible modes during transitions.) You can also neglect the effect of λ.
C_{G} is calculated in the following way, via the parallel-plate capacitor formula:
$\mathrm{C}_{\mathrm{G}}=(\mathrm{W})(\mathrm{L})\left(\mathrm{C}_{\mathrm{ox}}\right)=(\mathrm{W})(\mathrm{L})\left(\varepsilon_{0} \mathrm{k}_{\mathrm{ox}}\right) /\left(\mathrm{t}_{\mathrm{ox}}\right)$
where ε_{0} is a physical constant, and k_{ox} and t_{ox} are fixed by the fabrication process.
In view of these facts, fill in the following table, and provide justification for your answers:

	Fill in "increases" or "decreases" in each blank below.	
As W increases,	R	C_{G}
As L increases,	R	t_{p}
As $V_{D D}$ increases,	R	C_{G}

Problem 5:

Suppose you have a DRAM cell, with capacitance $\mathrm{C}_{\text {cell }}=25 \mathrm{fF}$.
In order to read a logic $1(3 \mathrm{~V})$ from this cell, the bit line must be able to achieve a voltage of at least 0.1 V so the sense amplifier can detect it.

How big can the bit line capacitance $\mathrm{C}_{\text {line }}$ be?
If $\mathrm{C}_{\text {line }}=(\mathrm{W})(\mathrm{L})\left(\mathrm{C}_{o \mathrm{x}}\right)=(1 \mu \mathrm{~m})(\mathrm{L})\left(150 \mu \mathrm{~F} / \mathrm{m}^{2}\right)$ where L is the length of the bit line in meters, how long can the bit line be?

