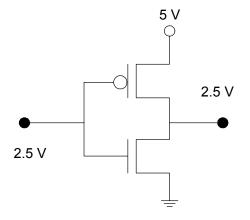
EE 42


Homework #6

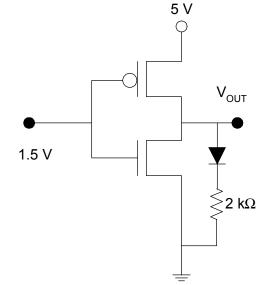
Due Friday, May 7 at 4pm in drop box

Problem 1:

Imagine that you are fabricating a CMOS inverter from scratch. You want your inverter to have a midpoint of 2.5 V when the supply voltage is 5 V. This means when the input is 2.5 V, the output should be 2.5 V, as shown.

Your fabrication process determines that: $C_{OX} = 5 \text{ fF}/\mu m^2$ for both PMOS and NMOS $\mu_n = 500 \text{ cm}^2/(\text{Vs})$ $\mu_p = 400 \text{ cm}^2/(\text{Vs})$ $V_{TH(n)} = 1 \text{ V}$ $V_{TH(p)} = -1 \text{ V}$ $\lambda_n = 0.1 \text{ V}^{-1}$

You have already decided on the lengths of the transistors; $L_n = L_p = 1.5 \ \mu m$.


With $W_n = 10 \mu m$, what is the value of W_p (the width of the PMOS) needed for this midpoint?

Problem 2:

 $\lambda_{\rm p} = -0.1 \ {\rm V}^{-1}$

Find V_{OUT} for the circuit shown at right.

Assume the large-signal model for the diode, With V_F = 2 V.

Problem 3:

Consider a CMOS NAND gate.

Suppose we attach *n* CMOS logic gate inputs to the output of this NAND gate (fanout of *n*).

What is the maximum value of *n* allowed if the worst-case propagation delay t_p through the NAND is not to exceed 100 ns?

Note: The propagation delay varies with different input combinations. You need to find the worst-case combination.

 $R_n = 1 k\Omega$ $R_p = 3 k\Omega$ $C_G = 10 pF$

Problem 4:

Let's explore how transistor design, through the choice of the transistor dimensions W and L, as well as the choice of power supply voltage V_{DD} , contributes to gate delay.

 R_n and R_p , the pull-down/pull-up transistor resistances, are calculated in the following way:

R = average value of (V_{DS} / I_D) over the time period 0 to t_p (during pull-up for PMOS or pull-down for NMOS)

In other words, average V_{DS} / I_D from the start of the pull, when $V_{DS} = \pm V_{DD}$, to the halfway point of the pull, when $V_{DS} = \pm V_{DD}/2$. During this time, V_{DS} is bigger in magnitude than $V_{DD}/2$, so you can assume saturation mode (Why? Review our inverter analysis of Lecture 20 where we talked about the possible modes during transitions.) You can also neglect the effect of λ .

C_G is calculated in the following way, via the parallel-plate capacitor formula:

 $C_{G} = (W)(L)(C_{ox}) = (W)(L)(\varepsilon_{0}k_{ox})/(t_{ox})$

where ε_0 is a physical constant, and k_{ox} and t_{ox} are fixed by the fabrication process.

In view of these facts, fill in the following table, and provide justification for your answers:

	Fill in "increases" or "decreases" in each blank below.		
As W increases,	R	C _G	t _p
As L increases,	R	C _G	t _p
As V_{DD} increases,	R	C _G	t _p

Problem 5:

Suppose you have a DRAM cell, with capacitance C_{cell} = 25 fF.

In order to read a logic 1 (3 V) from this cell, the bit line must be able to achieve a voltage of at least 0.1 V so the sense amplifier can detect it.

How big can the bit line capacitance Cline be?

If $C_{\text{line}} = (W)(L)(C_{\text{ox}}) = (1 \ \mu\text{m})(L)(150 \ \mu\text{F/m}^2)$ where L is the length of the bit line in meters, how long can the bit line be?