EECS 42 - Introduction to Electronics for Computer Science

Prof. A. R. Neureuther

Spring 2003,
Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590 UC Berkeley Office Hours (Tentative M, Tu, W, (Th), F 11 Course Web Site
http://www-inst.eecs.berkeley.edu/~ee42/

Solution to Problem Set \# 8 (by Farinaz Koushanfar)

8.1 (a) Let's call the current of $\mathrm{R}_{0}, \mathrm{i}_{0}$. Since at the output node, $\beta \mathrm{i}_{\mathrm{B}}=\mathrm{i}_{0}$, then at the node v_{E}, the currents between v_{E} and $\mathrm{v}_{\text {out }}$ cancel out each other, so the current i_{B} goes into the resistance R_{E}. If we write the KVL of the input loop, we get:
$\mathrm{v}_{\text {in }}-\mathrm{i}_{\mathrm{B}}\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\text {in }}+\mathrm{R}_{\mathrm{E}}\right)=0 \Rightarrow \mathrm{v}_{\text {in }} /\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\text {in }}+\mathrm{R}_{\mathrm{E}}\right)=\mathrm{i}_{\mathrm{B}}$
At the output node, $i_{0}=\beta i_{B}, v_{\text {out }}=v_{E}+i_{0} R_{0}=i_{B} R_{E}-R_{0} \beta i_{B}=\left(R_{E}-R_{0} \beta\right) v_{\text {in }} /\left(R_{s}+R_{\text {in }}+R_{E}\right)$
$\mathrm{v}_{\text {out }} / \mathrm{v}_{\text {in }}=\left(\mathrm{R}_{\mathrm{E}}-\mathrm{R}_{0} \beta\right) /\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\text {in }}+\mathrm{R}_{\mathrm{E}}\right)=(100 \Omega-100 \mathrm{~K} \Omega .100) /(1 \mathrm{~K} \Omega+10 \mathrm{~K} \Omega+100 \Omega)=-$
9999.9/11.1 = -900.8
(b) The input resistance at AA^{\prime} ' while output is short circuit, is $\mathrm{v}_{\mathrm{IN}} / \mathrm{i}_{\mathrm{B}}$. Now, the resistances R_{E} and R_{0} are in parallel with each other and parallel with the dependent source $\beta . i_{B}$. The voltage at the node v_{E} is $v_{I N} i_{B} . R_{i n}$. The KCL at node v_{E} now becomes: $i_{B}=\left(v_{\text {IN }}-i_{B} . R_{I N}\right) /\left(R_{E} \| R_{0}\right)-\beta . i_{B} \rightarrow i_{B}\left(1+\beta+R_{I N} /\left(R_{E} \| R_{0}\right)\right)=v_{\text {IN }} /\left(R_{E} \| R_{0}\right) \quad$ The physical significance is that $\rightarrow R\left(A^{\prime}\right)=v_{\text {IN }} / i_{B}=\left(R_{E} \| R_{0}\right)\left(1+\beta+R_{\text {IN }} /\left(R_{\mathrm{E}} \| \mathrm{R}_{0}\right)\right)=\mathbf{R}_{\text {IN }}+(\beta+\mathbf{1})\left(\mathbf{R}_{\mathrm{E}} \| \mathbf{R}_{\mathbf{0}}\right)$ c) Short circuit A and A^{\prime} and look at the output resistance.
the extra dependent source
current through $\mathbf{R}_{E} \| \mathbf{R}_{\mathbf{0}}$ maginifies the value.

Putting a bag around the dependent source and R_{0} shows that the currnet $i_{\text {out }}$ flows through Rin and Re in parallel and $v_{E}=i_{\text {out }}\left(R_{E} \| R_{\text {IN }}\right)$ and $i_{b}=-i_{\text {out }}\left(R_{E} /\left(R_{\text {IN }}+R_{E}\right)\right)$.

The current donward through $R_{0}=i_{R 0}=-\beta \cdot i_{B}+i_{\text {out }}$ $\mathbf{v}_{\text {OUT }}=\mathbf{i}_{\mathbf{R}_{0}} \mathbf{R}_{\mathbf{0}}+\mathbf{v}_{\mathbf{E}}=\mathbf{R}_{\mathbf{0}}\left(-\beta . \mathbf{i}_{\mathrm{b}}+\mathbf{i}_{\text {out }}\right)+\mathbf{i}_{\text {out }}\left(\mathbf{R}_{\mathrm{E}} \| \mathbf{R}_{\text {IN }}\right)$ $v_{\text {OUT }}=\mathbf{R}_{0}\left(\beta . i_{\text {out }}\left(\mathbf{R}_{E} /\left(\mathbf{R}_{\text {IN }}+\mathbf{R}_{E}\right)\right)+\mathbf{i}_{\text {out }}\right)+\mathbf{i}_{\text {out }}\left(\mathbf{R}_{E} \| \mathbf{R}_{\text {IN }}\right)$ Solving vout $/ i_{\text {out }}=\left(\beta \mathbf{R}_{\mathrm{E}} /\left(\mathbf{R}_{\text {IN }}+\mathbf{R}_{\mathrm{E}}\right)+\mathbf{1}\right) \mathbf{R}_{\mathbf{0}}+\left(\mathbf{R}_{\mathrm{E}} \| \mathbf{R}_{\text {IN }}\right)$ 8.2 (a) the sketch is shown :
(b) The voltage at the Op-AMP input is: $\mathrm{V}_{-}=\left(\mathrm{V}_{\mathrm{REF}}+\mathrm{V}_{\text {IN }}\right) / 2$.
Voltage $\mathrm{V}_{\text {OUT }}$ is an amplified version of $\mathrm{V}_{\text {IN }}$. for this condition to hold, we should have $\mathrm{V}_{\mathrm{REF}}+\mathrm{V}_{\mathrm{IN}} \leq 0$. In other words, $\mathrm{V}_{\mathrm{REF}}=-1 \mathrm{~V}$.
(c) $\mathrm{V}_{\text {RAIL- }}=0, \mathrm{~V}_{\text {RAIL }+}=2$
(d) $\mathrm{v}_{-}=\mathrm{v}_{\text {IN }} / 2, \mathrm{v}_{\text {OUT }}=\mathrm{v}_{-}+\mathrm{v}_{-} \cdot \mathrm{R}_{2} / \mathrm{R}_{1}=$ $\mathrm{v}_{-}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)=\mathrm{v}_{\text {IN }}\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) / 2$ $v_{\text {OUT }} / \mathrm{v}_{\text {IN }}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) / 2=1000, \mathrm{R}_{1}=1 \mathrm{~K} \Omega=>$ $\mathrm{R}_{2}=1999 \mathrm{~K} \Omega$
(e)

The physical significance is that the extra dependent source current adjusted for the fraction that makes it through through R_{IN}, maginifies the value of R_{0} by raising the top to bottom voltage drop on R_{0}. The dependent source in some sense 'burps' and current flows upward through it when ever current flows into the output. The resistance is nonetheless still positive.

(f)

Please note that this problem gave you experience in analyzing and vout (t) designing op-amps. The much A simpler circuit without feedback wouldgive more vertical transitions and thus be better in practice.

