EE42 - Problem Set \#7
 Solution

7.1.a Voltage divider formed by R1 and R2: $\mathrm{V} 2=\mathrm{Vin} \cdot \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}$

Voltage gain of VCVS:

$$
\mathrm{A} \cdot \mathrm{~V} 2=\operatorname{Vin} \cdot \frac{\mathrm{A} \cdot \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}
$$

Voltage divider by R3 and R4: \quad Vout $=A \cdot V 2 \cdot \frac{R 4}{R 3+R 4}$

7.1

$$
\begin{equation*}
\text { So, } \quad \text { Vout }=\mathrm{Vin} \cdot \frac{\mathrm{~A} \cdot \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4} \tag{1}
\end{equation*}
$$

7.1.b Let Vout $=$ Vout_DC $+\Delta$ Vout, $\operatorname{Vin}=$ VIn_DC $+\Delta \operatorname{Vin}$ in Eq. (1),

$$
\text { Vout_DC }+\Delta \text { Vout }=(\text { Vin_DC }+\Delta \mathrm{Vin}) \cdot \frac{\mathrm{A} \cdot \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4}
$$

Sort terms of DC and Δ, we get,

$$
\begin{align*}
& \text { Vout_DC }=\text { Vin_DC } \cdot \frac{\mathrm{A} \cdot \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4} \\
& \Delta \text { Vout }=\Delta \mathrm{Vin} \cdot \frac{\mathrm{~A} \cdot \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4} \tag{2}
\end{align*}
$$

Derive the small-signal gain from (2):

$$
\mathrm{Aac}=\frac{\Delta \mathrm{Vout}}{\Delta \mathrm{Vin}}=\mathrm{A} \cdot \frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4}
$$

7.2.a KCL at node V - : $\quad \frac{\mathrm{V}_{-}-\mathrm{V}_{\text {out }}}{\mathrm{R} 2}+\frac{\mathrm{V}_{-}}{\mathrm{R} 1}=0$

We also know:

$$
\mathrm{V}_{\text {out }}=\mathrm{A} \cdot \mathrm{~V}_{\mathrm{i}}=\mathrm{A} \cdot\left(\mathrm{~V}_{\text {in }}-\mathrm{V}\right)
$$

Given $\quad \frac{\mathrm{V}_{-}-\mathrm{V}_{\text {out }}}{\mathrm{R} 2}+\frac{\mathrm{V}_{-}}{\mathrm{R} 1}=0$

$$
\mathrm{V}_{\text {out }}=\mathrm{A} \cdot\left(\mathrm{~V}_{\text {in }}-\mathrm{V}\right)
$$

$\operatorname{Find}\left(V_{\text {out }}, V\right) \rightarrow\left[\begin{array}{l}A \cdot V_{\text {in }} \cdot \frac{(R 1+R 2)}{(R 1+R 1 \cdot A+R 2)} \\ R 1 \cdot A \cdot \frac{V_{\text {in }}}{(R 1+R 1 \cdot A+R 2)}\end{array}\right]$

7.2

So, $\quad \mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }} \cdot \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1+\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{~A}}}=10.999395$

Note: 1) In (5), term contains A in the denominator is the error term due to finite gain of VCVS.
2) If $A=\infty$, then Vout reduces to the form assuming op amp is ideal.
7.2.b A is large, so the term contains A in the denominator is small compared to R1. Apply Taylor expansion to (5), we have:

$$
\mathrm{V}_{\mathrm{out}}=\mathrm{V}_{\mathrm{in}} \cdot \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1+\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{~A}}}=\mathrm{V}_{\mathrm{in}} \cdot\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1}\right) \cdot\left(1-\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{~A} \cdot \mathrm{R} 1}\right)
$$

The fraction of deviation from ideal gain is: $\frac{\Delta V_{\text {out }}}{V_{\text {out }}(\text { ideal })}=-\frac{R 1+R 2}{A \cdot R 1}=\frac{-1}{A \cdot \frac{R 1}{R 1+R 2}}=-5.5 \cdot 10^{-5}$
Note: The term in the denominator of (6) is called "loop gain", i.e., the gain derived when going around the feedback loop of the op amp, including the resistive network forming a divider.
7.3.a Assuming ideal op amp, 1) $\mathrm{V}+=\mathrm{V}-$; 2) no current into + and - terminals, so $\mathrm{V}-=\mathrm{V}+=\mathrm{V} 2$ holds.

KCL at node V-, we get: $\quad \frac{\mathrm{V} 2-\mathrm{V} 1}{\mathrm{R} 1}+\frac{\mathrm{V} 2-\mathrm{Vout}}{\mathrm{R} 3}=0$
Solve, we have: \quad Vout $=\mathrm{V} 2 \cdot\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 1}\right)-\mathrm{V} 1 \cdot \frac{\mathrm{R} 3}{\mathrm{R} 1}$
7.3.b Op amp is ideal, no current flowing through R2, so $\mathrm{V}+=\mathrm{V} 2$ holds independent to the value of R 2 .

7.3.c VCVS is a voltage source, so RL at output in parallel to the VCVS will not affect the its voltage.
7.4.a

$$
\mathrm{Vo} 1=\mathrm{V} 1 \cdot\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

7.4.b $\quad \mathrm{Vo} 2=\mathrm{Vo} 1 \cdot\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)-\mathrm{V} 2 \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3}=\mathrm{V} 1 \cdot\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) \cdot\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)-\mathrm{V} 2 \cdot \frac{\mathrm{R} 4}{\mathrm{R} 3}$
7.5.a KCL at node $\mathrm{V} 2: \quad \frac{\mathrm{Vin}-\mathrm{V} 2}{\mathrm{R} 1}+\mathrm{I}_{\mathrm{B}}-\frac{\mathrm{V} 2}{\mathrm{R} 2}=0$

KCL at node Vout: $\quad \frac{\text { Vout }}{\mathrm{R} 4}+\frac{\text { Vout }-\mathrm{Vcc}}{\mathrm{R} 3}+\mathrm{gm} \cdot \mathrm{V} 2=0$

Given $\quad \frac{\mathrm{Vin}-\mathrm{V} 2}{\mathrm{R} 1}+\mathrm{I}_{\mathrm{B}}-\frac{\mathrm{V} 2}{\mathrm{R} 2}=0$

$$
\frac{\text { Vout }}{\mathrm{R} 4}+\frac{\text { Vout }- \text { Vcc }}{\mathrm{R} 3}+\mathrm{gm} \cdot \mathrm{~V} 2=0
$$

$\operatorname{Find}(\mathrm{Vout}, \mathrm{V} 2) \rightarrow\left[\begin{array}{c}-\mathrm{R} 4 \cdot \frac{\left(-\mathrm{Vcc} \cdot \mathrm{R} 1-\mathrm{Vcc} \cdot \mathrm{R} 2+\mathrm{gm} \cdot \mathrm{R} 2 \cdot \mathrm{R} 3 \cdot \mathrm{Vin}+\mathrm{gm} \cdot \mathrm{R} 2 \cdot \mathrm{R} 3 \cdot \mathrm{R} 1 \cdot \mathrm{I}_{\mathrm{B}}\right)}{(\mathrm{R} 3 \cdot \mathrm{R} 1+\mathrm{R} 3 \cdot \mathrm{R} 2+\mathrm{R} 4 \cdot \mathrm{R} 1+\mathrm{R} 4 \cdot \mathrm{R} 2)} \\ \mathrm{R} 2 \cdot \frac{\left(\mathrm{Vin}+\mathrm{R} 1 \cdot \mathrm{I}_{\mathrm{B}}\right)}{(\mathrm{R} 1+\mathrm{R} 2)}\end{array}\right]$

So, \quad Vout $=\frac{-\mathrm{gm} \cdot \mathrm{R} 2 \cdot \mathrm{R} 3 \cdot \mathrm{R} 4 \cdot\left(\mathrm{Vin}+\mathrm{I}_{\mathrm{B}} \cdot \mathrm{R} 1\right)}{(\mathrm{R} 1+\mathrm{R} 2) \cdot(\mathrm{R} 3+\mathrm{R} 4)}+\frac{\mathrm{Vcc} \cdot \mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4}$

Note: If superposition is applied to the analysis, it is very easy to eyeball the solution in (7) consisting of 3 terms:

1) Vin term, due to the cascade of divider R1 \& R2, VCCS gain gm, output resistance R3 || R4;
2) IB term, silimar to Vin, but need to go through a Thevenin equivalent transform at Vin;
3) Vcc term, simply a divider formed by R3 and R4.
7.5.b S Set $I B=V c c=0$, rewrite $K C L$'s

KCL at node V2: $\quad \frac{\mathrm{Vin}-\mathrm{V} 2}{\mathrm{R} 1}-\frac{\mathrm{V} 2}{\mathrm{R} 2}=0$
KCL at node Vout: $\quad \frac{\text { Vout }}{\mathrm{R} 4}+\frac{\text { Vout }}{\mathrm{R} 3}+\mathrm{gm} \cdot \mathrm{V} 2=0$

Solve, we have \quad Vout $=\frac{-\mathrm{gm} \cdot \mathrm{R} 2 \cdot \mathrm{R} 3 \cdot \mathrm{R} 4 \cdot \mathrm{Vin}}{(\mathrm{R} 1+\mathrm{R} 2) \cdot(\mathrm{R} 3+\mathrm{R} 4)}$
7.5.c If we set IB $=\mathrm{Vcc}=0$ in (7), we see we get exactly (8).

