EE42 - Problem Set \#5

Solution

5.1. $\mathrm{K} \quad \mathrm{KCL}$ for $\mathrm{Vb}, \frac{\mathrm{Vaa}-\mathrm{Vb}}{\mathrm{R} 1}+\frac{\mathrm{Vc}-\mathrm{Vb}}{\mathrm{R} 3}=0$
$K C L$ for $\mathrm{Vc}, \quad \frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 2}+\frac{\mathrm{Vb}-\mathrm{Vc}}{\mathrm{R} 3}-\frac{\mathrm{Vc}}{\mathrm{R} 4}=0$
5.1.b Let $R 1+R 3=R 5=4 k \Omega$, redraw the circuit

KCL for $\mathrm{Vc}, \quad \frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 5}+\frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 2}-\frac{\mathrm{Vc}}{\mathrm{R} 4}=0$
5.1.c Plug (1) into (2), we get

$$
\frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 5}+\frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 2}-\frac{\mathrm{Vc}}{\mathrm{R} 4}=0 \quad \text { same as }(3)
$$

5.1.d $\quad \mathrm{R} 1:=1 \quad \mathrm{R} 2:=2 \quad \mathrm{R} 3:=3 \quad \mathrm{R} 4:=4 \quad$ Vaa $:=3$
$\mathrm{R} 5:=\mathrm{R} 1+\mathrm{R} 3$

Given $\quad \frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 5}+\frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 2}-\frac{\mathrm{Vc}}{\mathrm{R} 4}=0 \quad \operatorname{Find}(\mathrm{Vc}) \rightarrow \frac{9}{4}$
$\mathrm{Vc}=9 / 4(\mathrm{~V})$
5.1.e
$\begin{aligned} \text { Given } & \frac{\mathrm{Vaa}-\mathrm{Vb}}{\mathrm{R} 1}+\frac{\mathrm{Vc}-\mathrm{Vb}}{\mathrm{R} 3}=0 \\ & \frac{\mathrm{Vaa}-\mathrm{Vc}}{\mathrm{R} 2}+\frac{\mathrm{Vb}-\mathrm{Vc}}{\mathrm{R} 3}-\frac{\mathrm{Vc}}{\mathrm{R} 4}=0 \quad \operatorname{Find}(\mathrm{Vb}, \mathrm{Vc}) \rightarrow\binom{\frac{45}{16}}{\frac{9}{4}}\end{aligned}$
$\mathrm{Vb}=45 / 16(\mathrm{~V})$
5.2.a Treat nodes Va and Vb as supernode
$\frac{\mathrm{Vaa}-\mathrm{Va}}{\mathrm{R} 1}-\frac{\mathrm{Va}}{\mathrm{R} 2}-\frac{\mathrm{Vb}}{\mathrm{R} 3}=0$
constraint $\quad \mathrm{Va}-\mathrm{Vb}=\mathrm{Vbb}$
5.2.b

Vaa $:=2 \quad \mathrm{Vbb}:=1 \quad \mathrm{R} 1:=1 \quad \mathrm{R} 2:=2 \quad \mathrm{R} 3:=3$
Given $\frac{\mathrm{Vaa}-\mathrm{Va}}{\mathrm{R} 1}-\frac{\mathrm{Va}}{\mathrm{R} 2}-\frac{\mathrm{Vb}}{\mathrm{R} 3}=0$
$\operatorname{Find}(\mathrm{Va}, \mathrm{Vb}) \rightarrow\binom{\frac{14}{11}}{\frac{3}{11}}$
5.2.b (cont'd) $\quad \mathrm{Va}=14 / 11(\mathrm{~V})$
5.2.c Treat nodes Va and Vb as supernode

Iss $-\frac{\mathrm{Va}}{\mathrm{R} 2}-\frac{\mathrm{Vb}}{\mathrm{R} 3}=0$
constraint $\quad \mathrm{Va}-\mathrm{Vb}=\mathrm{Vbb}$
5.2.d \quad Vaa $:=2 \quad$ Vbb $:=1 \quad$ R1 $:=1 \quad$ R2 $:=2 \quad$ R3 $:=3 \quad$ Iss $:=1$

Given $\quad \mathrm{Iss}-\frac{\mathrm{Va}}{\mathrm{R} 2}-\frac{\mathrm{Vb}}{\mathrm{R} 3}=0$
$\mathrm{Va}-\mathrm{Vb}=\mathrm{Vbb}$
$\operatorname{Find}(\mathrm{Va}, \mathrm{Vb}) \rightarrow\binom{\frac{8}{5}}{\frac{3}{5}}$

$$
\mathrm{Vb}=3 / 5(\mathrm{~V})
$$

5.3.a KCL for $\mathrm{Va}, \quad \frac{\mathrm{Vaa}-\mathrm{Va}}{\mathrm{R} 1}+\frac{\mathrm{Vb}-\mathrm{Va}}{\mathrm{R} 5}-\frac{\mathrm{Va}}{\mathrm{R} 2}=0$

KCL for $\mathrm{Vb}, \quad \frac{\mathrm{Vaa}-\mathrm{Vb}}{\mathrm{R} 3}+\frac{\mathrm{Va}-\mathrm{Vb}}{\mathrm{R} 5}-\frac{\mathrm{Vb}}{\mathrm{R} 4}=0$
5.3.b-c \quad Vaa $:=3 \quad$ R1 $:=1 \quad$ R2 $:=2 \quad$ R3 $:=2 \quad$ R4 $:=4 \quad$ R5 $:=5$

Given $\quad \frac{\mathrm{Vaa}-\mathrm{Va}}{\mathrm{R} 1}+\frac{\mathrm{Vb}-\mathrm{Va}}{\mathrm{R} 5}-\frac{\mathrm{Va}}{\mathrm{R} 2}=0$

$$
\frac{\mathrm{Vaa}-\mathrm{Vb}}{\mathrm{R} 3}+\frac{\mathrm{Va}-\mathrm{Vb}}{\mathrm{R} 5}-\frac{\mathrm{Vb}}{\mathrm{R} 4}=0 \quad \quad \operatorname{Find}(\mathrm{Va}, \mathrm{Vb}) \rightarrow\binom{2}{2}
$$

$$
\mathrm{Va}=\mathrm{Vb}=2(\mathrm{~V})
$$

5.3.d Remove R5 from the Wheatstone bridge, now we get two individual branches of the original circuit, each one forms a voltage divider. We can calculate voltages at node Va and Vb as follows:
$\mathrm{Va}=\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \mathrm{Vaa}=\frac{1}{\frac{\mathrm{R} 1}{\mathrm{R} 2}+1} \cdot \mathrm{Vaa} \quad \mathrm{Vb}=\frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4} \cdot \mathrm{Vaa}=\frac{1}{\frac{\mathrm{R} 3}{\mathrm{R} 4}+1} \cdot \mathrm{Vaa}$
So, when $\frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{\mathrm{R} 3}{\mathrm{R} 4}$ holds, $\mathrm{Va}=\mathrm{Vb} \quad$ also holds.
When all these hold, Va and Vb are equal-potential, i.e., there will be no current following through R5 if it is put back into the circuit.
5.4.a KCL for $\mathrm{Vb} \quad \frac{\mathrm{V} 1-\mathrm{Vb}}{\mathrm{R} 1}+\mathrm{I} 2=0$
$\mathrm{V} 1:=2 \quad \mathrm{R} 1:=1 \quad$ I2 $:=1$

Given $\frac{\mathrm{V} 1-\mathrm{Vb}}{\mathrm{R} 1}+\mathrm{I} 2=0 \quad \operatorname{Find}(\mathrm{Vb}) \rightarrow 3$
$\mathrm{Vb}=3(\mathrm{~V})$
5.4.b Short V1 and open I2, the circuit simplifies into R1 in series with R2, thus the Thevenin resistance looking into port Vout is:

$$
\operatorname{Rth}(\text { Vout })=\mathrm{R} 1+\mathrm{R} 2=3(\mathrm{k} \Omega)
$$

5.5
$\mathrm{Vc}(\mathrm{t}=0)=\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cdot \mathrm{Vs}=2(\mathrm{~V})$
$\mathrm{Vc}(\mathrm{t}=\infty)=6(\mathrm{~V})$
In general, $\quad \mathrm{Vc}(\mathrm{t})=\mathrm{A}+\mathrm{Be}^{\bar{\tau}} \quad$ for $\mathrm{t}>=0$
evaluate $\operatorname{Vc}(t)$ for $t=0$, we get $\quad A+B=2$
evaluate $\mathrm{Vc}(\mathrm{t})$ for $\mathrm{t}=$ infinity, we get $\mathrm{A}=6 \quad$ so $\quad \mathrm{B}=-4$

By inspection, we also know $\quad \tau=\mathrm{R} 1 \cdot \mathrm{C}=4(\mathrm{~ns})$
So, we have $\quad \operatorname{Vc}(\mathrm{t})=6-4 \mathrm{e}^{\frac{-\mathrm{t}}{4 \mathrm{~ns}}} \quad$ for $\mathrm{t}>=0$

