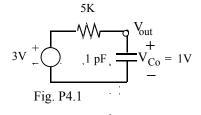
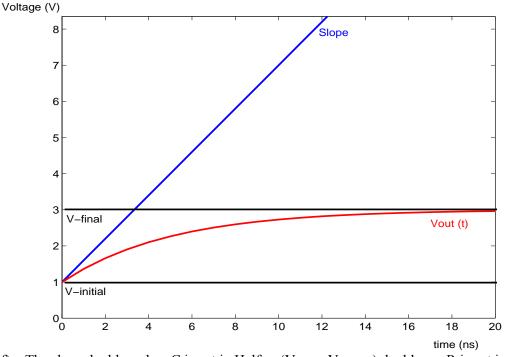
EECS 42 – Introduction to Electronics for Computer Science




Spring 2003, Dept. EECS, 510 Cory UC Berkeley Course Web Site

Prof. A. R. Neureuther neureuth@eecs.berkeley.edu 642-4590 Office Hours (Tentative M, Tu, W, (Th), F 11 http://www-inst.eecs.berkeley.edu/~ee42/

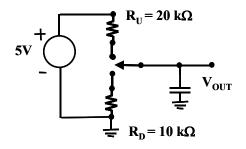
Solution to Problem Set # 4 (by Farinaz Koushanfar)

- **4.1 Sketch/Trend.** (Using C = 1pF).
 - a) As 't' goes to infinity the capacitor voltage stops changing and the current goes to zero. Without current there is no voltage on the 5k resistor and $V_{out} = 3V$.
 - b) $RC = (1pF)(5k\Omega) = 5$ ns.
 - c) The initial slope $dV/dt = (1/C) (V_{FINAL}-V_{INITIAL})/R = 0.6V/ns.$
 - d) {Show horizontal line at 0 and at 3V, line from 0 to 3V at 5 ns.}
 - e) refer to the graph below:

f) The slope doubles when C is cut in Half or $(V_{FINAL}-V_{INITIAL})$ doubles or R is cut in half.

4.2 General Exponential Form.

- a) $I_R = (3 V V_0(t))/R$.
- b) $I_C = C dV_0/dt$
- c) $C dV_0/dt = (3 V V_0(t))/R$
- d) $C(1/\tau)B e^{-(t/\tau)} = (3 V A B e^{-(t/\tau)})/R$
- e) $0 = \{(3 \text{ V-A})/R\} + \{[-B(C/\tau) B/R]\} (e^{-(t/\tau)})$ Since this equation holds for t >0 both the constant and the exponential term coefficients must be individually zero. A = 3V and $\tau = RC =$ 1pF×5k $\Omega = 5$ ns.
- f) $\dot{V}_0(0) = 0 \Longrightarrow B = -A = -3V$


ation $I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= I_{SS} = ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$ $= ImA, R_1 = Ik\Omega, R_2 = 2k\Omega, R_3 = 3 k\Omega$

4.3 Nonzero levels and resistors. (Using C = 1 pF)

- a) As t goes to infinity, $I_C = 0$, thus $V_0 = I_{ss}(R_2 || R_3) = 1 \text{mA} \times (1.2 \text{k}\Omega)$ = 1.2V
- b) Setting $I_{SS} = 0$ leaves R1 without current so $R_{TH} = (R_2 || R_3) = 1.2 k\Omega$
- c) At t =0, $I_{OUT} = Iss V_0/R3 V_0/R2 = 1 mA + 0.5mA + 0.33mA = 1.83mA$ $dV_{OUT}/dt = (1/C) \times I = (1/pF)(1.83mA) = 1.83 V/ns$
- d) a) => A = 1.2V, b) => t =RC = $1.2k\Omega \times 1$ pF = 1.83 ns, V₀(0) = -1 => B = -2.2V.

4.4 Pulse shape. (Using C = 0.1 pF)

- a) With switch at R_D , $V_{OUT}(t)$ goes to zero as t goes to infinity.
- b) $\tau = R_D C = 10 k\Omega \times 0.1 \text{ pF} = 1 \text{ ns.}$ $V_{OUT}(t) = 5 e^{-(t/1 \text{ ns})} \text{ V for } t > 0.$
- c) To decay to 50%, $e^{-(t/1ns)} = 0.5$. Taking the ln() of both sides gives, t = 2ns, $ln(2) = 0.69 \times (1ns) = 0.69ns$.
- d) $V_{OUT}(t = 1.5 \text{ ns}) = 5 \text{ e}^{-(1.5 \text{ ns})/1 \text{ ns})} = 5 \text{ e}^{-1.5} = 1.12 \text{ V}.$
- e) When the switch is up again $\tau = R_U C = 20k\Omega \times 0.1 \text{ pF} = 2\text{ ns}$ $V_{OUT}(t) = 5V - 3.88V \text{ e}^{-((t-1.5\text{ns})/2\text{ns})}$ for t > 1.5 ns. [For fun $5V - 3.88V \text{ e}^{-((t-1.5\text{ns})/2\text{ns})} = 4V => 3.88 \text{ e}^{-((t-1.5\text{ns})/2\text{ns})} = 1 = ((t-1.5\text{ns})/2\text{ns}) = \ln(3.88), (t-1.5\text{ns}) = (1.36)(2\text{ns}) = 2.71\text{ ns} => t = 1.5 \text{ ns} + 2.71 \text{ ns} = 4.21 \text{ ns}.$

