EECS 42 - Introduction to Electronics for Computer Science

Spring 2003,
Prof. A. R. Neureuther
Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590
UC Berkeley Office Hours (Tentative M, Tu, W, (Th), F 11
Course Web Site
http://www-inst.eecs.berkeley.edu/~ee42/

Solution to Problem Set \# 4 (by Farinaz Koushanfar)

4.1 Sketch/Trend. (Using C = 1pF).
a) As ' t ' goes to infinity the capacitor voltage stops changing and the current goes to zero. Without current there is no voltage on the 5 k resistor and $\mathrm{V}_{\text {out }}=3 \mathrm{~V}$.
b) $\mathrm{RC}=(1 \mathrm{pF})(5 \mathrm{k} \Omega)=5 \mathrm{~ns}$.
c) The initial slope $\mathrm{dV} / \mathrm{dt}=(1 / \mathrm{C})\left(\mathrm{V}_{\text {Final }}-\mathrm{V}_{\text {INITIAL }}\right) / \mathrm{R}=0.6 \mathrm{~V} / \mathrm{ns}$.
d) \{Show horizontal line at 0 and at 3 V , line from 0 to 3 V at 5 ns .\}
e) refer to the graph below:

Fig. P4.1 Voltage (V)

f) The slope doubles when C is cut in Half or $\left(\mathrm{V}_{\mathrm{FINAL}}-\mathrm{V}_{\text {INITIAL }}\right)$ doubles or R is cut in half.

4.2 General Exponential Form.

a) $\mathrm{I}_{\mathrm{R}}=\left(3 \mathrm{~V}-\mathrm{V}_{0}(\mathrm{t})\right) / \mathrm{R}$.
b) $\mathrm{I}_{\mathrm{C}}=\mathrm{CdV} / \mathrm{dt}$
c) $\mathrm{CdV}_{0} / \mathrm{dt}=\left(3 \mathrm{~V}-\mathrm{V}_{0}(\mathrm{t})\right) / \mathrm{R}$
d) $\mathrm{C}(1 / \tau) \mathrm{B} \mathrm{e}^{-(t \tau)}=\left(3 \mathrm{~V}-\mathrm{A}-\mathrm{B} \mathrm{e}^{-(t \tau)}\right) / \mathrm{R}$
e) $0=\{(3 \mathrm{~V}-\mathrm{A}) / \mathrm{R}\}+\{[-\mathrm{B}(\mathrm{C} / \tau)-\mathrm{B} / \mathrm{R}]\}$ ($\mathrm{e}^{-(\mathrm{t} / \tau)}$) Since this equation holds for $\mathrm{t}>0$ both the constant and the exponential term coefficients must be individually zero. $\mathrm{A}=3 \mathrm{~V}$ and $\tau=\mathrm{RC}=$ $1 \mathrm{pF} \times 5 \mathrm{k} \Omega=5 \mathrm{~ns}$.
f) $\mathrm{V}_{0}(0)=0 \Rightarrow \mathrm{~B}=-\mathrm{A}=-3 \mathrm{~V}$

Fig. P4.3
4.3 Nonzero levels and resistors. (Using $\mathrm{C}=1 \mathrm{pF}$)
a) As t goes to infinity, $\mathrm{I}_{\mathrm{C}}=0$, thus $\mathrm{V}_{0}=\mathrm{I}_{\mathrm{ss}}\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right)=1 \mathrm{~mA} \times(1.2 \mathrm{k} \Omega)$ $=1.2 \mathrm{~V}$
b) Setting $\mathrm{I}_{\mathrm{SS}}=0$ leaves R 1 without current so $\mathrm{R}_{\mathrm{TH}}=\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right)=1.2 \mathrm{k} \Omega$
c) $\mathrm{At} \mathrm{t}=0, \mathrm{I}_{\text {OUT }}=\mathrm{Iss}-\mathrm{V}_{0} / \mathrm{R} 3-\mathrm{V}_{0} / \mathrm{R} 2=1 \mathrm{~mA}+0.5 \mathrm{~mA}+0.33 \mathrm{~mA}=1.83 \mathrm{~mA}$ $\mathrm{dV}_{\text {OUT }} / \mathrm{dt}=(1 / \mathrm{C}) \times \mathrm{I}=(1 / \mathrm{pF})(1.83 \mathrm{~mA})=1.83 \mathrm{~V} / \mathrm{ns}$
d) a$)=>\mathrm{A}=1.2 \mathrm{~V}, \mathrm{~b}) \Rightarrow \mathrm{t}=\mathrm{RC}=1.2 \mathrm{k} \Omega \times 1 \mathrm{pF}=1.83 \mathrm{~ns}, \mathrm{~V}_{0}(0)=-1 \Rightarrow \mathrm{~B}=-2.2 \mathrm{~V}$.
4.4 Pulse shape. (Using $\mathrm{C}=0.1 \mathrm{pF}$)
a) With switch at $R_{D}, V_{\text {OUT }}(t)$ goes to zero as t goes to infinity.
b) $\tau=\mathrm{R}_{\mathrm{D}} \mathrm{C}=10 \mathrm{k} \Omega \times 0.1 \mathrm{pF}=1 \mathrm{~ns}$.
$V_{\text {OUT }}(t)=5 \mathrm{e}^{-(\mathrm{t} / \mathrm{ns} \mathrm{s})} \mathrm{V}$ for $\mathrm{t}>0$.
c) To decay to 50%, $\mathrm{e}^{-(\mathrm{t} / \mathrm{nn})}=0.5$. Taking the $\ln ()$ of both sides gives, $\mathrm{t}=2 \mathrm{~ns}, \ln (2)=0.69 \times(1 \mathrm{~ns})=0.69 \mathrm{~ns}$.
d) $\mathrm{V}_{\text {OUT }}(\mathrm{t}=1.5 \mathrm{~ns})=5 \mathrm{e}^{-(1.5 \mathrm{~ns} / 1 \mathrm{~ns})}=5 \mathrm{e}^{-1.5}=1.12 \mathrm{~V}$.
e) When the switch is up again $\tau=\mathrm{R}_{\mathrm{U}} \mathrm{C}=20 \mathrm{k} \Omega \times 0.1 \mathrm{pF}=2 \mathrm{~ns}$ $\mathrm{V}_{\text {OUT }}(\mathrm{t})=5 \mathrm{~V}-3.88 \mathrm{~V} \mathrm{e}^{-((\mathrm{t}-1.5 \mathrm{~ns}) / 2 \mathrm{~ns})}$ for $\mathrm{t}>1.5 \mathrm{~ns}$.

[For fun $5 \mathrm{~V}-3.88 \mathrm{~V} \mathrm{e}^{-((\mathrm{t}-1.5 \mathrm{~ns}) / 2 \mathrm{~ns})}=4 \mathrm{~V}=>3.88 \mathrm{e}^{-((\mathrm{t}-1.5 \mathrm{~ns}) / 2 \mathrm{~ns})}=$ $1=>((\mathrm{t}-1.5 \mathrm{~ns}) / 2 \mathrm{~ns})=\ln (3.88),(\mathrm{t}-1.5 \mathrm{~ns})=(1.36)(2 \mathrm{~ns})=$ $2.71 \mathrm{~ns}=>\mathrm{t}=1.5 \mathrm{~ns}+2.71 \mathrm{~ns}=4.21 \mathrm{~ns}$.

