EECS 42 - Introduction to Electronics for Computer Science

Spring 2003, Dept. EECS, 510 Cory

Prof. A. R. Neureuther
neureuth@eecs.berkeley.edu 642-4590 UC Berkeley Office Hours (Tentative M, Tu, W, (Th), F 11
Course Web Site

Problem Set \# 1 Solutions (by Farinaz Koushanfar)

1.1 Flow. area(hula-hoop) $=\pi r^{2}=\pi(0.8)^{2}=2.0106\left(\mathrm{~m}^{2}\right)$
number of oranges in a second $=$ density \times area(hula-hoop) \times distance in one second $=$ density \times area(hula-hoop) \times velocity $=100 \times 2.0106 \times 0.2=40.21$ oranges $/ \mathrm{s}$
b) $\quad 6(40.21) / 32=1.2566=7.54$ quartz $/ \mathrm{hr}$
c) $\quad 100$ gallons $=12800$ ounces
$\mathrm{t}=12800 /(6 \times 40.21)=53(\mathrm{~s})$

1.2 Potential.

$(1,-1) \Rightarrow h=150$
$(1,3) \Rightarrow h=550$
$(4,3) \Rightarrow h=1300$
$(4,5) \Rightarrow h=1500$
a) increase 1: 550-150 $=400$; increase 2: $1300-550=750$; increase 3: $1500-1300=200$; height climbed $=200+400+750=1350$
b) decrease $1:=-400 ;$ decrease 21: $=-750$; decrease $3:=-200$;
height climbed $=-(-400-750-200)=1350$
c) my path is: $(1,-1) \Rightarrow(1,0) \Rightarrow(4,2) \Rightarrow(4,5)$
$(1,0) \Rightarrow h=250 ;(4,2) \Rightarrow h=1200$
increase 1: $250-150=100$; increase 2: $1200-250=950$; increase 3: $1500-1200=300$; height climbed $=100+950+300=1350$

1.3 Truth Tables.

a)

A	B	$\mathrm{A}+\mathrm{B}$	$\mathrm{A}(\mathrm{A}+\mathrm{B})$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

c)

A	B	A^{\prime}	B^{\prime}	$\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

$\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$ and (AB)' are equal

1.4 Graphical Solutions.

d) As can be seen on the graph, intersection of $y_{1}(x)$ and $y_{3}(x)$ is at $x=0.74$.
e) Intersection of $y_{2}(x)(k=2)$ and $y_{3}(x)$ is at $\mathrm{x}=3.5$.
NOTE: there were typos in the homework handout. Points will not be subtracted for people who solved the original form.
d)
the
assi
gnm
ents
for
b)

A	B	AB	$(\mathrm{AB})^{\prime}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

