EECS 42 – Introduction to Electronics for **Computer Science**

Spring 2003, **Prof. A. R. Neureuther** Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590 UC Berkeley Office Hours (Tentative M, Tu, W, (Th), F 11 **Course Web Site** http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set # 1 Solutions (by Farinaz Koushanfar)

- **1.1 Flow.** area(hula-hoop) = $\pi r^2 = \pi (0.8)^2 = 2.0106 \text{ (m}^2)$ number of oranges in a second = density \times area(hula-hoop) \times distance in one second = density \times area(hula-hoop) \times velocity = $100 \times 2.0106 \times 0.2 = 40.21$ oranges/s
- 6(40. 21)/32 =1.2566 = 7.54 quartz/hr b)
- 100 gallons =c) 12800 ounces

$$t = 12800/(6 \times 40.21) = 53(s)$$

1.2 Potential.

- $(1,-1) \Rightarrow h = 150$
- $(1,3) \Rightarrow h = 550$
- $(4,3) \Rightarrow h = 1300$
- $(4,5) \Rightarrow h = 1500$
- increase 1: 550 -150 = 400; increase 2: 1300-550 = 750; increase 3: 1500 -1300 = 200; a) height climbed = 200 + 400 + 750 = 1350
- b) decrease 1: = -400; decrease 21: = -750; decrease 3: = -200;
- height climbed = -(-400-750-200) = 1350
- my path is: $(1,-1) \Rightarrow (1,0) \Rightarrow (4,2) \Rightarrow (4,5)$ c) $(1,0) \Rightarrow h = 250; (4,2) \Rightarrow h = 1200$ increase 1: 250 - 150 = 100; increase 2: 1200 - 250 = 950; increase 3: 1500 - 1200 = 300; height climbed = 100 + 950 + 300 = 1350

b)

1.3 Truth Tables.

a)						
А	В	A+B	A(A+B)			
0	0	0	0			
0	1	1	0			
1	0	1	1			
1	1	1	1			

А	В	AB	(AB)'
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

c)

А	В	A'	B'	A'+B'	a) the
0	0	1	1	1	assi
0	1	1	0	1	gnm
1	0	0	1	1	ents
1	1	0	0	0	for

A'+B' and (AB)' are equal **1.4 Graphical Solutions.**

d) As can be seen on the graph, intersection of $y_1(x)$ and $y_3(x)$ is at x=0.74.

e) Intersection of $y_2(x)$ (k=2) and $y_3(x)$ is at x=3.5.

NOTE: there were typos in the homework handout. Points will not be subtracted for people who solved the original form.

