EECS 42 – Introduction to Electronics for Computer Science

Spring 2003, Dept. EECS, 510 Cory UC Berkeley Course Web Site

Prof. A. R. Neureuther neureuth@eecs.berkeley.edu 642-4590 Office Hours (Tentative M, Tu, W, (Th), F 11 http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set # 9 Due 2:30 PM April 9th, 240 Cory

Reading: Week 10# Logic with State Dependent Devices S&O 593-595,604-611 (read for graphs and not device equations) plus Handouts lectures 16 and 17. 9.1 NMOS I versus V. Use the 42S NMOS equation from Lecture 16.

- a) Sketch I_{OUT} versus V_{OUT} for $V_{IN} = 0, 2.5$ and 5 V.
- b) Find I_{OUT} when $V_{IN} = 3.0V$ and $V_{OUT} = 4.5V$.
- c) Find I_{OUT} when $V_{IN} = 3.0V$ and $V_{OUT} = 0.5V$.
- d) Find V_{IN} when $I_{OUT} = 15 \ \mu A$ and $V_{OUT} = 0.5V$.

9.2 Logic Gate with a resistive load. Use the 42S_NMOS equation from Lecture 16 and assume that a logic gate has a 100k Ω pull-up resistor to V_{DD} = 5V. In addition, assume that the output of the gate is loaded by a second 100k Ω resistor to ground. (The final circuit is like that in the last slide in Lecture 16 but the 200k Ω resistor is now a 100k Ω resistor.)

- a) Draw the load line for this circuit on the I_{OUT} versus V_{OUT} of Problem 9.1.
- b) Find V_{OUT} for $V_{IN} = 0, 1, 2, 3, 4$, and 5V.
- c) Sketch the voltage transfer characteristic for this loaded circuit.
- 9.3 PMOS I versus V. Use the 42S_PMOS equation from Lecture 17.
 - a) Sketch I_{OUT} versus V_{OUT} for $V_{IN} = 0$, 2.5 and 5 V.
 - b) Find I_{OUT} when $V_{IN} = 3.0V$ and $V_{OUT} = 4.5V$.
 - c) Find I_{OUT} when $V_{IN} = 3.0V$ and $V_{OUT} = 0.5V$.
 - d) Find V_{IN} when $I_{OUT} = 15 \ \mu A$ and $V_{OUT} = 0.5 V$.

9.4 CMOS Operation. A 42S_NMOS and a 42S_PMOS device to form an inverter with $V_{DD} = 5V$ as discussed in Lecture 17. Use your results from 9.1 and 9.3 to help you do the following.

- a) On the same axes, draw I_{OUT} vs V_{OUT} for the NMOS and PMOS when connected as a CMOS circuit with $V_{ij} = 25V$ and find the intersection point $(I_{ij} = V_{ij})$
- CMOS circuit with V_{IN} = 2.5V and find the intersection point (I_{OUT}, V_{OUT}).
 b) Find V_{OUT} for the CMOS circuit when I_{OUT} = 15 μA. {Hint: You can not directly combine 9.1 d) with 9.3 d). Instead choose the one of these two for which the current is in saturation and locally independent of V_{OUT} to first find V_{IN}. Then, use this V_{IN} to find a
 - new V_{OUT} for the device that is not in saturation.}
- c) Find V_M (or V_{MID})
- d) Sketch the VTC for this circuit.