EECS 42 – Introduction to Electronics for Computer Science

Spring 2003, Dept. EECS, 510 Cory UC Berkeley Course Web Site

Prof. A. R. Neureuther neureuth@eecs.berkeley.edu 642-4590 Office Hours (Tentative M, Tu, W, (Th), F 11 http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set # 7 Due 2:30 PM Mar 19th, 240 Cory

Reading: Week 9# Circuit analysis with dependent sources and comparators and opamps (4.1-4.4).

7.1 Basic Dependent Source. Consider the circuit in Fig. P7.1.

- a) Find V_{OUT} .
- b) Set $V_{IN} = V_{IN_DC} + \Delta V_{IN}$, and set $V_{OUT} = V_{OUT_DC} + \Delta V_{OUT}$ in your answer in part a). Then sort terms on the left and right side into groups of DC and Δ . They must be zero independently. Then solve for the small change in V_{OUT} given by (ΔV_{OUT}) divided by the small change in V_{IN} given by (ΔV_{IN}) . This is the small signal gain = $\Delta V_{OUT} / \Delta V_{IN}$.

7.2 Amplifier-Based Op-Amp. Consider the circuit in Fig. P7.2. Do not use the ideal op-amp technique but solve as a circuit assuming that there is no current through R_i but $V_{-} = V_{IN} + V_{OUT}/A$.

- a) Find V_{OUT}.
- b) Determine the fraction by which V_{OUT} deviates $(R_1 + R_2)/R_1$.

7.3 Ideal Op-Amp. Consider the circuit in Fig. P7.3 and use the ideal op-amp analysis technique.

- a) Find V_{OUT}.
- b) Explain why the answer is independent of R_2 .
- c) Explain why the answer is independent of R_L .

7.4 Cascade Op-Amps. Use the circuit in Fig. P7.4 and note that this circuit is made up of the circuit in 7.2 with A = infinite and the circuit in 7.3.

- a) Find V_{O1} .
- b) Find V_{02} .

7.5 Independent and Dependent Sources: Consider the circuit in Fig. P7.5.

- a) Find V_{OUT} as a function of the sources V_{IN} , I_B and V_{CC} .
- b) Revise the circuit diagram to the case where the independent sources I_B and V_{CC} are zero and solve this circuit for V_{OUT} .
- c) Check you answer by setting I_B and V_{CC} to zero in your answer to part a).

