EECS 42 - Introduction to Electronics for Computer Science

Prof. A. R. Neureuther
Spring 2003,
Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590
UC Berkeley Office Hours (Tentative M, Tu, W, (Th), F 11
Course Web Site
http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set \# 7 Due 2:30 PM Mar 19th, 240 Cory

Reading:. Week 9\# Circuit analysis with dependent sources and comparators and opamps (4.1-4.4).
7.1 Basic Dependent Source. Consider the circuit in Fig. P7.1.
a) Find $V_{\text {out }}$.
b) Set $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IN_DC }}+\Delta \mathrm{V}_{\text {IN }}$, and set $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT_DC }}+\Delta \mathrm{V}_{\text {OUT }}$ in your answer in part a). Then sort terms on the left and right side into groups of DC and Δ. They must be zero independently. Then solve for the small change in $\mathrm{V}_{\text {OUT }}$ given by $\left(\Delta \mathrm{V}_{\text {OUT }}\right)$ divided by the small change in $\mathrm{V}_{\text {IN }}$ given by $\left(\Delta \mathrm{V}_{\text {IN }}\right)$. This is the small signal gain $=\Delta \mathrm{V}_{\text {dut }} / \Delta \mathrm{V}_{\text {IN }}$.
7.2 Amplifier-Based Op-Amp. Consider the circuit in Fig. P7.2. Do not use the ideal op-amp technique but solve as a circuit assuming that there is no current through R_{i} but $V-=V_{\text {IN }}+V_{\text {Out }} / \mathbf{A}$.
a) Find $V_{\text {OUT }}$.
b) Determine the fraction by which $V_{\text {Out }}$ deviates $\left(R_{1}+R_{2}\right) / R_{1}$.
7.3 Ideal Op-Amp. Consider the circuit in Fig. P7.3 and use the ideal op-amp analysis technique.
a) Find Vout.
b) Explain why the answer is independent of R_{2}.
c) Explain why the answer is independent of R_{L}.
7.4 Cascade Op-Amps. Use the circuit in Fig. P7.4 and note that this circuit is made up of the circuit in 7.2 with $\mathrm{A}=$ infinite and the circuit in 7.3.
a) Find V_{OI}.
b) Find V_{02}.
7.5 Independent and Dependent Sources: Consider the circuit in Fig. P7.5.
a) Find $V_{\text {OUT }}$ as a function of the sources $V_{I N}, I_{B}$ and $V_{C C}$.
b) Revise the circuit diagram to the case where the independent sources I_{B} and $V_{C C}$ are zero and solve this circuit for $V_{\text {out }}$.
c) Check you answer by setting I_{B} and $V_{C C}$ to zero in your answer to part a).

Fig. P7.1

Fig. P7. 4

Fig. P7.5

