EECS 42 - Introduction to Electronics for Computer Science

Spring 2003,
Prof. A. R. Neureuther
Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590 UC Berkeley Course Web Site

Office Hours (Tentative M, Tu, W, (Th), F 11

http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set \# 4 Due 2:30 PM Feb 19th, 240 Cory

Reading: Week \#4 Section 8.1 Schwarz and Oldham, Viewgraphs in HANDOUT_RC available on the web. Week \#5 Feb. $17^{\text {th }}$ is a UC Holiday, Feb $19^{\text {th }}$ Node Eq.
4.1 Sketch/Trend. Consider the circuit in Fig. P4.1. At $t=0$, the capacitor voltage $V_{C}=1 \mathrm{~V}$.
a) Find $V_{\text {Out }}$ as t goes to infinity.
b) Evaluate the time constant RC in ns.
c) Evaluate the initial slope $\mathrm{dV} / \mathrm{dt}=(1 / \mathrm{C})\left(\mathrm{V}_{\text {FINAL }}-\mathrm{V}_{\text {INITIAL }}\right) / \mathrm{R}$
d) Draw axes for $V_{\text {out }}(t)$ vs t where t goes from 0 to 20 ns . Draw horizontal lines for $\mathrm{V}_{\text {Intitial }}$ and $\mathrm{V}_{\text {Initial }}$. Draw a slanted line with the slope found in part c).

Fig. P4.1
e) Sketch $V_{\text {out }}(t)$ on the graph.
f) What one-by-one fractional changes (i.e. doubling or reduction by half) of the individual parameters $\mathrm{C}, \mathrm{V}_{\mathrm{FINAL}}-\mathrm{V}_{\text {INITIAL }}$ and R will cause the slope to double?
4.2 General Exponential Form. Use the circuit in Fig. P4.1 and values from Problem 4.1.
a) Assume that $\mathrm{V}_{\text {Out }}(\mathrm{t})$ is an known function and find an equation
for the current through the resistor in terms of $\mathrm{V}_{\text {out }}(\mathrm{t})$.
b) Assume that $\mathrm{V}_{\text {Out }}(\mathrm{t})$ is an known function and find an equation for the current through the capacitor in terms of the time derivative of $\mathrm{V}_{\text {OUT }}(\mathrm{t})$.
c) Equate a) and b) to obtain a differential equation for $V_{\text {OuT }}(t)$.
d) Substitute $\mathrm{V}_{\text {OUT }}(\mathrm{t})=\mathrm{A}+\mathrm{B} \mathrm{e}^{-(\mathrm{t} \tau)}$ and carry out the derivatives.
e) Group the equations into constant terms and terms times $\mathrm{e}^{-(\mathrm{t} \tau)}$.

Set these two groups of terms equal to zero to get two equations.
Which two of the three parameters A, B and τ do they determine?
$\mathrm{I}_{\mathrm{SS}}=1 \mathrm{~mA}, \mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=2 \mathrm{k} \Omega, \mathrm{R}_{3}=3 \mathrm{k} \Omega$
f) Use the initial value to determine the third parameter.
4.3 Nonzero levels and resistors. A capacitor is precharged to -1.0 volts and connected at $\mathrm{t}=0$ to the circuit in Fig. P4.3. This makes $\mathrm{V}_{\text {Out }}(0)=-1 \mathrm{~V}$.
a) Find the voltage on the capacitor as t goes to infinity.
b) Determine theThevenin resistance seen by the capacitor by setting $\mathrm{I}_{\mathrm{SS}}=0$.

Fig. P4.3
These values are the same as in Problem 4.1
c) Find $\mathrm{I}_{\text {out }}$ and $\mathrm{dV}_{\text {OUT }} / \mathrm{dt}$ at $\mathrm{t}=0$.
d) Assume $\mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{A}+\mathrm{B} \mathrm{e}^{-(\mathrm{t} / \tau)}$ and use th initial condition and a) and b) to find A, B, and τ.
4.4 Pulse shape. In the circuit in Fig. P4.4 the switch has been in the upward position connecting to R_{U} for a long time. At $t=0$ the switch changes such that it is connected to R_{D}.
a) Find $V_{\text {out }}(t)$ as t goes to infinity and the RC time constant.
b) Find $V_{\text {out }}(t)$ for $t>0$.
c) Determine the fraction of a time constant and the actual time that it takes for $\mathrm{V}_{\text {out }}(\mathrm{t})$ to reach 2.5 V .
d) Find $V_{\text {OUT }}(t=1.5 \mathrm{~ns})$.
e) Assume the switch returns to the upward position a $\mathrm{t}=1.5 \mathrm{~ns}$ and determine $V_{\text {out }}(t)$ for $t>1.5 \mathrm{~ns}$. (Be aware that there is a different time constant going upward.)

Brain teaser for fun for good students: determine the time at which $V_{\text {OuT }}(\mathrm{t})$ reach 4 V on its way back upward!

