02/15/03 3 Corrections (Capacitor Values)

EECS 42 – Introduction to Electronics for Computer Science

Spring 2003, Dept. EECS, 510 Cory UC Berkeley Course Web Site Prof. A. R. Neureuther neureuth@eecs.berkeley.edu 642-4590 Office Hours (Tentative M, Tu, W, (Th), F 11 http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set # 4 Due 2:30 PM Feb 19th, 240 Cory

Reading: Week #4 Section 8.1 Schwarz and Oldham, Viewgraphs in HANDOUT_RC available on the web. Week #5 Feb. 17th is a UC Holiday, Feb 19th Node Eq. **4.1 Sketch/Trend.** Consider the circuit in Fig. P4.1. At t = 0, the capacitor voltage $V_C = 1V$.

- a) Find V_{OUT} as t goes to infinity.
- b) Evaluate the time constant RC in ns.
- c) Evaluate the initial slope $dV/dt = (1/C) (V_{FINAL}-V_{INITIAL})/R$
- d) Draw axes for $V_{OUT}(t)$ vs t where t goes from 0 to 20 ns. Draw horizontal lines for $V_{INITIAL}$ and $V_{INITIAL}$. Draw a slanted line with the slope found in part c).

- e) Sketch $V_{OUT}(t)$ on the graph.
- f) What one-by-one fractional changes (i.e. doubling or reduction by half) of the individual parameters C, V_{FINAL}-V_{INITIAL} and R will cause the slope to double?

4.2 General Exponential Form. Use the circuit in Fig. P4.1 and values from Problem 4.1.

a) Assume that $V_{OUT}(t)$ is an known function and find an equation for the current through the resistor in terms of $V_{OUT}(t)$.

the same as in

Problem 4.1

- b) Assume that $V_{OUT}(t)$ is an known function and find an equation for the current through the capacitor in terms of the time derivative of $V_{OUT}(t)$.
- c) Equate a) and b) to obtain a differential equation for $V_{OUT}(t)$.
- d) Substitute $V_{OUT}(t) = A + B e^{-(t/\tau)}$ and carry out the derivatives.
- e) Group the equations into constant terms and terms times $e^{-(t/\tau)}$. Set these two groups of terms equal to zero to get two equations. Which two of the three parameters A, B and τ do they determine?
- f) Use the initial value to determine the third parameter.

4.3 Nonzero levels and resistors. A capacitor is precharged to -1.0 volts and connected at t=0 to the circuit in Fig. P4.3. This makes $V_{OUT}(0) = -1V$.

- a) Find the voltage on the capacitor as t goes to infinity.
- b) Determine the Thevenin resistance seen by the capacitor by setting $I_{SS} = 0$.
- c) Find I_{OUT} and dV_{OUT}/dt at t =0.
- d) Assume $V_{OUT}(t) = A + B e^{-(t/\tau)}$ and use th initial condition and a) and b) to find A, B, and τ .

4.4 Pulse shape. In the circuit in Fig. P4.4 the switch has been in the upward position connecting to R_U for a long time. At t =0 the switch changes such that it is connected to R_D .

- a) Find $V_{OUT}(t)$ as t goes to infinity and the RC time constant.
- b) Find $V_{OUT}(t)$ for t > 0.
- c) Determine the fraction of a time constant and the actual time that it takes for $V_{OUT}(t)$ to reach 2.5V.
- d) Find $V_{OUT}(t = 1.5 \text{ ns})$.
- e) Assume the switch returns to the upward position a t = 1.5 ns and determine $V_{OUT}(t)$ for t > 1.5 ns. (Be aware that there is a different time constant going upward.)

Brain teaser for fun for good students: determine the time at which $V_{OUT}(t)$ reach 4 V on its way back upward!

