EECS 42 - Introduction to Electronics for Computer Science

Spring 2003,
Prof. A. R. Neureuther
Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590
UC Berkeley Office Hours (Tentative M, Tu, W, (Th), F 11
Course Web Site

http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set \# 3 Due 2:30 PM Feb 12th, 240 Cory

Reading: Section 5.1, 2.2, 3.1-3.4 Schwarz and Oldham. 4th week 8.1 and Handout 3.1 Capacitance. An airplane has a capacitance to the clouds around it of $1 \mathrm{mF}=0.001 \mathrm{~F}$. It flies through a thunderstorm at $900 \mathrm{~km} / \mathrm{hr}$ picking up 10^{17} electrons per meter. It was uncharged before entering the storm.
a) Find the charge on the plane as a function of time.
b) Find voltage on the plane as a function of time.

Note: Airplanes have thin wires with points that continuously discharge the plane. The
c) If lightning strikes when the potential of the airplane reaches 100 KV , find the distance it will go into the thunderstorm before lightning strikes?
d) If the lightning strike discharges the plane find the energy that is released.
3.2 Capacitance androtage versus time. A 1 pF capacitance from a 1 cm wire on a PC board is charged by a current of $1 \mu \mathrm{~A}$ for $2 \mu \mathrm{~s}$. At $2 \mu \mathrm{~s}$ the current increases to $2 \mu \mathrm{~A}$ for an additional 2 $\mu \mathrm{s}$. At 4μ s the currentreverses to $-4 \mu \mathrm{~A}$. Now the answers will be between 0 and 10 V .
a) Find the voltage versus time from 0 to $6 \mu \mathrm{~s}$.
b) Find the energy supplied during the interval 0 to $2 \mu \mathrm{~s}$.
c) Find the energy supplied during the interval 2 to 4μ s.
d) Explain why is c) not proportional to the square of the change in voltage?
3.3 Equivalent Circuits. Consider the circuit in Fig. P3.3.
a) Assume $\mathrm{V}_{\text {Out }}=1.2 \mathrm{~V}, 0.6 \mathrm{~V}$ and 0 V are caused by three different external loads. Find the corresponding current $\mathrm{I}_{\text {out. }}$.
b) Which of the above values were the easiest to find?
c) Sketch $\mathrm{I}_{\text {out }}$ versus $V_{\text {Out }}$ from your data.

d) Use your graphical results to find a voltage supply and one resistor in series (Thevenin equivalent) that could be used to replace the three resistors and current source.
e) Show that $R_{T}=-V_{O d} / I_{S C}$.
f) What combination of $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} gives R_{T} ? Verify that turning the current source to zero and evaluating the resistance looking into the output gives this same result.
3.4 Equivalent Circuits and Ideal Supplies. Consider the circuit in Fig. P3.4.
a) Find $V_{O C}$.
b) Find I_{Sc}.
$\mathrm{V}_{\mathrm{AA}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{SS}}=1 \mathrm{~mA}, \mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{R}_{2}=2 \mathrm{k} \Omega$
c) Find the Norton equivalent circuit.
d) Find the voltage on the current source when $\mathrm{I}_{\text {out }}=0$.
e) Find the current through the voltage source when $\mathrm{V}_{\text {OUT }}=0$.

Fig. P3. 4
3.5 Nonlinear Load and Power. Use a graphical method to find the solution for the following loads when attached to $\mathrm{V}_{\text {Out }}$ in Fig. P3.3. (No algebra please. Accuracy to 5\% is fine. Use your graph from Problem 3.3.)
a) Find $\mathrm{V}_{\text {OUT }}$ and $\mathrm{I}_{\text {OUT }}$ and then the power into the load when the load is a $4 \mathrm{k} \Omega$ resistor.
b) Find $\mathrm{V}_{\text {OUT }}$ and $\mathrm{I}_{\text {OUT }}$ and then the power into the load when the load has

$$
\mathrm{I}_{\mathrm{LOAD}}=1\left(\mathrm{~mA} / \mathrm{V}^{2}\right)\left(\mathrm{V}_{\mathrm{OUT}}\right)^{2} .
$$

c) Find $\mathrm{V}_{\text {OUT }}$ and $\mathrm{I}_{\text {OUt }}$ and then the power into the load when the load has

$$
\mathrm{I}_{\mathrm{LOAD}}=-2 \mathrm{~mA}+1\left(\mathrm{~mA} / \mathrm{V}^{2}\right)\left(\mathrm{V}_{\mathrm{OUT}}\right)^{2} .
$$

