CIRCUIT ELEMENTS AND CIRCUIT ANALYSIS

Lecture 5 review:

- Terminology: Nodes and branches
- Introduce the implicit reference (common) nodedefines node voltages
- Introduce fundamental circuit laws: Kirchhoff's Current and Voltage Laws

Today:
tal circuit laws: Kirchhoff's Current

- Formal nodal analysis
- Resistors in series and parallel and the voltage divider

Rationale:

- Method applies to circuits of any size, dc or transient analysis
- Approach is algorithmic; Same as Spice or other circuit analysis programs

FORMAL CIRCUIT ANALYSIS

Systematic approaches to writing down KCL and KVL: Section 2.3 of Text - In particular use of KCL gives NODAL ANALYSIS

Mathematical foundation is rigorous: EECS 104

Nodal Analysis: Node voltages are the unknowns
Mesh Analysis: Branch currents are the unknowns

Use one or the other for circuit analysis

We will do only nodal analysis - (because voltages make more convenient variables than currents)

REVIEW OF IV CHARACTERISTICS OF A RESISTOR

Question: What is the I-V characteristic for a $10 \mathrm{~K} \Omega$ resistor? Draw on axes below.

$$
\begin{aligned}
\mathcal{A n s} \text { we } \mathrm{r}: & \mathcal{V}=0 \Rightarrow I=0 \\
& \mathcal{V}=I \mathcal{R} \Rightarrow I=1 \mathrm{~mA} \\
& \text { when } \mathcal{V}=10 \mathcal{V}
\end{aligned}
$$

REVIEW OF CURRENT-VOLTAGE CHARACTERISTICS OF VOLTAGE \& CURRENT SOURCES

Describe a two-terminal circuit element by plotting current vs. voltage

releasing power absorbing power

\mathcal{V} is constant, irrespective of $i \quad V$ is undetermined, irrespective of i

Now lets move on to learning about a technique for analyzing circuits of arbitrary complexity (i.e. lots of nodes and branches).

$$
\begin{gathered}
\text { Our preferred tecfinque is called Nodal Analysis } \\
\text { and is simply the repeated application of Kirchoff's } \\
\text { current law. }
\end{gathered}
$$

FORMAL CIRCUIT ANALYSIS USING KCL: NODAL ANALYSIS

(Memorize these steps and apply them rigorously!)
1 Choose a Reference Node $\stackrel{\downarrow}{=}$
2 Define unknown node voltages (those not fixed by voltage sources)

3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements*)

4 Solve the set of equations (N equations for N unknown node voltages)

* with inductors or floating voltages we will use a modified Step 3

NODAL ANALYSIS USING KCL
 - The Voltage Divider -

1 Choose reference node

2 Define unknown node voltages
3 Write KCL at unknown nodes

4 Solve:

$$
V_{2}=v_{S S} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

EXAMPLE OF NODE ANALYSIS

Choose a reference node and define the node voltages (except reference node and the one set by the voltage source);
node voltage known

Apply KCL:

$$
\begin{aligned}
& \frac{V_{a}-V_{1}}{R_{1}}+\frac{V_{a}-V_{b}}{R_{3}}+\frac{V_{a}}{R_{2}}=0 \\
& \frac{V_{b}-V_{a}}{R_{3}}+\frac{V_{b}}{R_{4}}-I_{S}=0
\end{aligned}
$$

You can solve for $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}$.

RESISTORS IN SERIES

(Here its more convenient to use KVL than node analysis)
Circuit with several resistors in series - Can we find an equivalent resistance?

- KCL tells us same current flows through every resistor
- KVL tells us

$$
\mathrm{I} \cdot \mathrm{R}_{1}+\mathrm{I} \cdot \mathrm{R}_{2}+\mathrm{I} \cdot \mathrm{R}_{3}+\mathrm{I} \cdot \mathrm{R}_{4}=\mathrm{V}_{\mathrm{SS}}
$$

- Clearly,

$$
\mathrm{I}=\mathrm{V}_{\mathrm{SS}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)
$$

\square Thus, equivalent resistance of resistors in series is the simple sum

GENERALIZED VOLTAGE DIVIDER

Circuit with several resistors in series

-We know

$$
\mathrm{I}=\mathrm{V}_{\mathrm{SS}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)
$$

- Thus,

$$
\mathrm{V}_{1}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \cdot \mathrm{~V}_{\mathrm{SS}}
$$

and
$V_{3}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot V_{S S}$
etc.. etc..

WHEN IS VOLTAGE DIVIDER FORMULA CORRECT?

Correct if nothing else connected to nodes

What is V_{2} ?

$$
\mathrm{V}_{2} \neq \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \cdot \mathrm{~V}_{\mathrm{SS}}
$$

because R_{5} removes condition of resistors in series - i.e. $\mathrm{i}_{3} \neq \mathrm{I}$

Answer:

$$
: \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{5} \|\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)} \cdot \mathrm{V}_{\mathrm{SS}}
$$

