CIRCUIT ELEMENTS AND CIRCUIT ANALYSIS

Today:

- Formal nodal analysis
- Resistors in series and parallel and the voltage divider

Rationale:

- Method applies to circuits of any size, dc or transient analysis
- Approach is algorithmic; Same as Spice or other circuit analysis programs

FORMAL CIRCUIT ANALYSIS

Systematic approaches to writing down KCL and KVL: Section 2.3 of Text - In particular use of KCL gives NODAL ANALYSIS

Mathematical foundation is rigorous: EECS 104

Nodal Analysis: Node voltages are the unknowns Mesh Analysis: Branch currents are the unknowns analysis

We will do only nodal analysis – (because voltages make more convenient variables than currents)

W. G. Oldham

REVIEW OF IV CHARACTERISTICS OF A RESISTOR

+

If we use associated current and voltage (i.e., i is defined as into + terminal), then v = iR (Ohm's law)

Question: What is the I-V characteristic for a 10K Ω resistor? Draw on axes

W. G. Oldham

REVIEW OF CURRENT-VOLTAGE CHARACTERISTICS OF VOLTAGE & CURRENT SOURCES

Describe a two-terminal circuit element by plotting current vs. voltage

Now lets move on to learning about a technique for analyzing circuits of arbitrary complexity (i.e. lots of nodes and branches).

Our preferred techinque is called Nodal Analysis and is simply the repeated application of Kirchoff's current law.

FORMAL CIRCUIT ANALYSIS USING KCL: NODAL ANALYSIS

(Memorize these steps and apply them rigorously!)

1 Choose a Reference Node $\stackrel{\perp}{=}$

- 2 Define unknown node voltages (those not fixed by voltage sources)
- 3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements*)
- 4 Solve the set of equations (N equations for N unknown node voltages)

* with inductors or floating voltages we will use a modified Step 3

NODAL ANALYSIS USING KCL – The Voltage Divider –

- 1 Choose reference node
- 2 Define unknown node voltages
- 3 Write KCL at unknown nodes

$$\frac{V_{SS} - V_2}{R_1} = \frac{V_2 - 0}{R_2}$$

4 Solve:

$$V_2 = V_{SS} \cdot \frac{R_2}{R_1 + R_2}$$

EXAMPLE OF NODE ANALYSIS

Choose a reference node and define the node voltages (except reference node and the one set by the voltage source);

What if we used different ref node?

RESISTORS IN SERIES

(Here its more convenient to use KVL than node analysis)

Circuit with several resistors in series – Can we find an equivalent resistance?

- KCL tells us same current flows through every resistor
- KVL tells us
 - $\mathbf{I} \cdot \mathbf{R}_1 + \mathbf{I} \cdot \mathbf{R}_2 + \mathbf{I} \cdot \mathbf{R}_3 + \mathbf{I} \cdot \mathbf{R}_4 = \mathbf{V}_{\mathrm{SS}}$

• Clearly, $I = V_{SS} / (R_1 + R_2 + R_3 + R_4)$

Thus, equivalent resistance of resistors in series is the simple sum

GENERALIZED VOLTAGE DIVIDER

Circuit with several resistors in series

• We know $I = V_{SS}/(R_1 + R_2 + R_3 + R_4)$

Thus,

$$V_1 = \frac{R_1}{R_1 + R_2 + R_3 + R_4} \cdot V_{SS}$$

and

$$V_3 = \frac{R_3}{R_1 + R_2 + R_3 + R_4} \cdot V_{SS}$$

etc.. etc..

WHEN IS VOLTAGE DIVIDER FORMULA CORRECT?

