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Review of charging and discharging in RC Circuits
(an enlightened approach)

« Before we continue with formal circuit analysis - lets review RC circuits

« Rationale: Every node in a circuit has capacitance to ground, like it or
not, and it's the charging of these capacitances that limits real circuit

performance (speed)

Relevance to digital circuits:

voltana
v Ultuu\a

We communicate with pulses

We send beautiful pulses out

time—

i\

time —

RC charging effects are responsible .... So lets review them.

But we receive lousy-looking pulses
and must restore them

voltane
v uy\,
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Simplification for time behavior of RC Circuits

« Before any input change occurs we have a dc circuit problem (that is
we can use dc circuit analysis to relate the output to the input).

« Long after the input change occurs things “settle down” .... Nothing is
changing .... So again we have a dc circuit problem.

We call the time period
during which the output
changes the transient

voltana
v Ultuu\a

We can predict a lot about the
transient behavior from the pre- and

post-transient dc solutions A ﬂ

time —

time—

voltane
v MU\,
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What environment do pulses face?

 Every wire in a circuit has resistance.
« Every junction (called nodes) has capacitance to ground and other nodes.

* The active circuit elements (transistors) add additional resistance in series
with the wires, and additional capacitance in parallel with the node
capacitance.

Inputnode R Output node

| o A pulse originating at node | will
+ arrive delayed and distorted at
\Vin —C node O because it takes time to
- charge C through R

—— ground
If we focus on the circuit which distorts the pulses produced by Vin, it
consists simply of R and C. (Vin is just the time-varying source
which produces the input pulse.)
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The RC Circuit to Study
(All single-capacitor circuits reduce to this one)

Input node R Output node

 AAN—s

—C

—— ground

* R represents total resistance (wire plus whatever drives the
Input node)

* C represents the total capacitance from node to the outside
world (from devices, nearby wires, ground etc)
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RC RESPONSE

Case 1 — Rising voltage. Capacitor uncharged: Apply + voltage step

W. G. Oldham

e Input node = R Output node
;. Vout | Q e
: Vin C
R _

time ——— ground

Vin-»

Vin “jumps” at t=0, but Vout cannot “jump” like Vin. Why not?

% Because an instantaneous change in a capacitor voltage would
require instantaneous increase in energy stored (1/2CV?), that is,
Infinite power. (Mathematically, V must be differentiable: I=CdV/dt)

V does not “jump” at t=0, i.e. V(t=0*) = V(t=0)

Therefore the dc solution before the transient tells us the capacitor
voltage at the beginning of the transient.
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RC RESPONSE
Case 1 — Capacitor uncharged: Apply voltage step

VAR
t Input node . R Output node
S . T NN—
Vin Q —— C
> ) —— ground
0 time—,

* Vout approaches its final value asymptotically (It never quite
gets to V1, but it gets arbitrarily close). Why?

After the transient is over (nothing changing anymore) it means d(V)/dt
= 0 ; that is all currents must be zero. From Ohm'’s law, the voltage
across R must be zero, i.e. Vin = Vout.

< Thatis, Vout® Vlast® ¥. (Asymptotic behavior)

Again the dc solution (after the transient) tells us (the asymptotic limit
of) the capacitor voltage during the transient.
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RC RESPONSE
Example — Capacitor uncharged: Apply voltage step of 5V

5 _A
t Input node . R Output node
S . T NN—
Vin Q —— C
> ) —— ground
0 time—,

* Clearly Vout starts out at OV (att=0*) and approaches 5V.

 We know this because of the pre-transient dc solution (V=0) and
post-transient dc solution (V=5V).

So we know a lot about Vout during the transient - namely its initial
value, its final value , and we know the general shape .
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RC RESPONSE: Case 1 (cont.)

V1
1 Input node . R Output node
= . WV
Vin Q —— C
0 i —— ground

la}

Equation for Vout: Do you remember
Exact form of Vout? general form?

Vout = Vl(l'e_tlt)

V

Vout— =
Vout —+

Exponential!

0 time — o ¢ time——
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Review of simple exponentials.

Rising Exponential from Zero Falling Exponential to Zero
— _a-tit _ )
Vout Vl(l € ) Vout - Vle "
att=0, Vout =0, and att =0, Vout = Vl ’ and
att >, Vout 2 Vl also att >, Vout - 0, also
att=1, Vour = 0.63 V, att=t, V=037V,
V

V, //
63V, |

0O t time 0O t time
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Further Review of simple exponentials.

Rising Exponential from Zero Falling Exponential to Zero
— -tt
Vour = Vi(1-e™) V. = V,et
We can add a constant (positive or negative)
Vout = Vl(l'e_tlt) + V2 Vout = Vle_t/t L V2
VOUt
A
V,+V,
.63V,;+V,

0O t time 0 t time



EECS42 SPRING 2001 Lecture 7 W. G. Oldham

Copyright Regents of University of California

Further Review of simple exponentials.
Rising Exponential Falling Exponential

V. =V (1-et) + V, Vour = Vi +V,

Both equations can be written in one simple form:| V/_ .= A + Be-t/t

Initial value (t=0) : V,,, = A+ B. Final value (t>>t): V_,=A

Thus: if B <0, rising exponential; if B > 0, falling exponential

VKUt V;ut
A A+B |-
Here B> 0
Here B< O
A+B | A |
0 > 0 >

0 time 0 time



EECS42 SPRING 2001 Lecture 7

Copyright Regents of University of California W. G. Oldham

RC RESPONSE: Case 1 (Rising exponential)

| Vout
n

VlA VinO—._/\/\/\/'. ‘ .Vgt V1A WW

R ey / Vo= e

 Howist relatedto Rand C ?
— If C is bigger, it takes longer (t-).
— If R is bigger, it takes longer (t-).
& Thus, t Is proportional to RC.

& |nfact,t = RC!

= Thus, VOut — Vl(]_-e-t/t)
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RC RESPONSE: Case 1 (cont.)
Proof thatV_, =V, (1- €"7)

R
VoM A—s Ve
iR_'i

e

CVY
iy = Vo 'Rvout (Ohm'slaw) —
i = C% (capacitancelaw)
But i, =i_!
Thus’ Vin B Vout — dVout
R dt
or
dVOUt - 1 (Vin - Vout)
d RC

W. G. Oldham
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RC RESPONSE Case 1 (cont.)
Proof that V out = Vl(l- gt/ RC)

dVv 1 o
We have: OUt:R (M .vo t) Proof by substitution:
u

dt
dVv_, 2
—\/ — outz 1 i,
But V. =V, =constant 7 —rcVin Vout)

_ — N+
and Vout_o a t=0

V
1~-t/RC2 1 t/RC
| claim that the solution to this #R € (V]_ 1(1 € )
first-o_rder_ Ii.near differential Clearly
equation is: V vV
/ 1o t/RC = '1 o t/RC
V_ =V (1- e VRG RC RC
ut 1
and

V. .=0at=0" OK

out



EECS42 SPRING 2001 Lecture 7 Copyright Regents of University of California W. G. Oldham

RC RESPONSE (cont)

|n0—\/ v \] * out

Generalization | C
'cv——

Vin switches at t = O; then for any time interval t > 0, in which Vin is a
constant, Vout is always of the form:
Y V,, = A+ Bet

We determine A and B from the initial voltage on C, and the
value of Vin. Assume Vin “switches” at t=0 from Vco to V1:

First,at t=0 V_.°V_ Initia voltage
= Thus,|A+B=V_
ast® ¥,V_.® V,

= Thus, A=V,/|p B

V_ -V,

Co




