EECS 42 Spring 2000 Lecture 7 C. T. Choi

Inductance and Capacitance

Lecture 6 review:

* Power Calculations
* Starting your car (model)

Today: (5.1, 5.2)
 Ideal inductors and capacitors
* Energy storage

» Practical capacitors and inductors
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Power Calculations

Why?

* To find out how much power is being delivered to
(from) some device, e.g. loud speaker.

* Alternative, it may be undesirable to delivered
power to some part of the circuit, because of the
heat it generates.

* Basic idea is addressed in the first lecture.

How?
Use the Associated Reference Direction convention.
l
o
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v
—_———
-—
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Associated Reference Directions

* Itis convenient to define the current through
a circuit element as positive when entering
the terminal associated with the + reference
for voltage

For positive current and
positive voltage, positive
charge “falls down” a potential
“drop” in moving through the :
circuit element: it absorbs ‘ e i
power.

EECS 42 Spring 2000 Lecture 7 C. T. Choi

Power Definitions

« P =VI> 0 corresponds to the element
absorbing power

— How can a circuit element absorb power?

* By converting electrical energy into heat
(resistors in toasters), light (light bulbs),
acoustic energy (speakers); by storing
energy (charging a battery)

* Negative power - releasing power to the

rest of the circuit.
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Conservation of Power

« Sum of the power absorbed by all circuit
element must be zero.

» Concept: circuit elements are used to model
all modes of energy conversion (heat, sound,
batteries, voltage generators, etc.)

« Simple example: [=-2mA
Power released (VI <0) «—
by the element on the +
left equals to the V=15V

power absorbed
by the element on
the right.
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Example of Power Flowing into Current Source

What is the power flow into o

the current source in the circuit on |
the right? 100ma(}) 3wa
Put an imaginary box enclosing the current @

source and apply the associated
reference direction (ARD) to the current source.

(1) Assume V convention on the right, ARD | o
dictates that current has to go into + side | }

of the terminals.

By KVL: V =100mAx(60 Q +40Q) =10V | __ !

By KCL: | =-100mA Y
The power entering the box (in this case, current source) is:
Power = VI =10V x -100mA =-1W [O1W is leaving the box
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Example of Power Flowing into Current Source (cont)

(2) Assume V’ convention on the right, ARD
dictates that current has to go into + side
of the terminals.

By KVL: V' =100mAx(60 Q +40Q) = -10V
By KCL: I' =100mA
The power entering the box (in this case, current source) is:
Power = VI’ =-10V x 100mA =-1 W [1W is leaving the box

Conclusions: V convention does not affect the results. Both
conventions leads to the same conclusion that 1W is leaving
the box or current source.
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Example of Power Flowing into resistor

Find the power entering the 40 Q resistor
as shown in the circuit.

By associate reference direction convention.

the V and | are defined. g [T |

+ : i

By inspection | = 100mA NG , i 4o i
I3

V =1x40Q =4V ) ! i

' I

P=1xV=100mA x 4V = 0.4W ]
[00.4W is entering the box (or 40Q resistor).

(Using the similar strategy, it is found that
0.6W is entering the 60Q resistor.)
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EXperimental Measurement of Power using ™"
a Volt Source and a Ammeter

|.__

The box in the right contains an o ' Ls:
unknown circuit, experimentally . e S
it is found that the I-V diagram | RN
as shown. . \ p——— ]

(how? Set the voltage, and measure the current by the ammeter)

V (set) | (measured) P =V I (compute)

-3V -18mA +54mW (power entering)
-2V -16mA +32mwW

-1V -14mA +14mW

0 -10mA 0 (no power transfer)

v -2mA -2mW (power leaving)
2V +20mA +40mW

3V +400mA +1.2W

] In the first and the third quadrant of the I-V curve, power is entering.

In the second and the fourth quadrant, power is leaving. 9
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Special cases

If a voltage exists across a resistor R,

Power dissipated in the resistor = VI =V (V/IR) =V?/R
(Ohm’s law applies in this case)

If a current flow, I, through a resistor R,

Power dissipated in the resistor = VI = (IR) | =I°R
(Ohm’s law also applies in this case)
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Instantaneous Power and Average Power

When V and | are function of time, we write as v(t) and i(t),
then instantaneous power entering the box is:

P(0)=vi() (instantaneous power, power as function of t)

This is particularly useful to compute the maximum power
received or delivered at any instant.

1 .
Pyy :;IOT vidt  (time-averaged power)
This is particularly useful for computing the trend, the average
power received or delivered.

Does DC current have instantaneous or time-average power?
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Example (Time-averaged Power Transferred)

6]

ERIINInE

1 2 3 4 5 6 7 8 Time

Find the timé&averaged power transferfed into resistor R, if
the time varying voltage source v(t) is as shown on the right.

v({CD

Observation: (1) v(t) is a square wave (max at V,;, min at 0)
i(t)isa wave (maxat ,minat )
Instantaneous power = v(t)i(t) = or
(2) Period from Oms to 3ms, or 1ms to 4ms,
or 2ms to 5ms.

1 0.003
P, = 1)i(t)dt
v = 0003—ok O

2

p =1 O'OOIOdt+J'0'002V—°2dt+jo'0030dt _ 1 Vioz(()‘()()l) o
40,0035 oot g 7 Jooo 0.003 R 3R
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Multi-terminal Elements

We dealt with circuit element
with 2 terminals in the preceding _h

sections. ———O0—] ;
Vi -—
_._O———
Here we have 4 terminals b Vi
_—— 00—

P = V1, +V,l,+ Vgl VI,

Va
H . . [31 lv%
Notice the reference direction
of | is toward the terminals, the !
terminals are labeled V,, V,, V3, V,.

This can be generalized into any N terminals
devices.
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Show that the 2 terminals circuit and
formula is a special case to our 4 !

terminals circuit formula. 0/
v

Is P=VI a special case of s O0—

Generalize into a 2 terminals circuit:

P=V,,+V,l, |
=t

Comparing the 2 circuits, Yi

I=l, I=-1, o

P=V,1;+V,l, becomes P=V,I-V,I=(V;-V,)l  —=7P— 1

But V=V,-V, (comparing the 2 circuits)

P=VI which is our original Power formula.
00 P=VI is a special case of P=V,1;+V,|,+V;l;+V,l,
general formula.
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Starting a Car

A starting motor of a car typical
of a range of 20-40 Amp and 12 volt.

|
If we take 30Amp and 12 volt. 2y ; i
The motor can be modeled as a i
equivalent resistance with value :’*m;“

R,,=12/30 = 0.4Q as shown in the o
diagram on the right.

Can we replace the bulky car battery by eight 1.5v AA
size batteries in series? Why not? They are both 12V.

The battery model 12v% needs to be replaced by a more
accurate electrical model.
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Battery model
We can model each battery as an ideal 12V voltage source.
But this would not help us to understand the difference

between eight 1.5V batteries in series and a 12V car battery.

Next, we can model the battery (2 terminal voltage source)
as a Thévenin equivalent circuit as shown below.

Both batteries have an identical V; (open circuit voltage),
so what is the difference between the two?

By voltage divider formula: i
Ry L vr
Ry +Ry, !

Since V; and R,arethe  |_______

same for both batteries, the ™ o
difference is in R. batiery motor
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Battery model (cont)

The typical car battery has a Thévenin resistance of
0.05 Q.
0.4 12

Vi =12 =10.67V  I= =26.674
0.05+0.4 0.05+0.4

The typical AA size battery has a Thévenin resistance of

20 Q.
vy =124 =235y, 12

1= =(.5884
20+0.4 20+0.4

That is not sufficient voltage and current to start a car.

This is no surprising because you don’'t expect AA size batteries
to be sufficient to start a car!

Typically, the resistance (R;) is a function of the cross section
of the device (in this case, battery). The larger the cross
section, the smaller the resistance.
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Points To Remember:

» Power flow can be calculated from the expressions P = VI for
two-terminal circuit elements and P = Z V,, [, for multi-terminal
circuit element. However, it is essential that the signs of the
various voltages and currents be stated correctly. —

* If voltage and current vary, the quantity v(1)i(t) is known as the
instantaneous power. The time-averaged power is the average
over time of the instantaneous power.
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Duality

o + -
black, white
Voltage, Current

Capacitors, inductors.
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Capacitors

- Q=CV VA

where Q=charge 'Q
V=voltage difference between 2 plates
C= capacitance

take derivative with respect to t on both sides

e dQ/dt=C dV/dt =i
* i=CdV/dt (remember |-V diagram)

e current = constant X time derivative of voltage

* Ohm'’s law tells us about the relationship between
V and | for a resistor. This equation describes the
relationship between i and V for a capacitor.
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Capacitor example

Capacnors (Contmue) » Find the current I,(t) that passes through the capacitor

« The I-V relationship for a [\org as shown. The voltage source is a sinusoid V,sinat,
capacitor is: A —I"' B where V, and w are given constants and t is time.
—c4 O ( O A
L1 =C (V) v A y _ o
d A B Since the voltage source is sinusoidal
Where C is the capacitance in Farad or F, mF, pF, nF, pF (change with time), the current +(> T
. . Vo, sin wt (™ C Lih
Notice the current depends on the derivative. If the derivative across the capacitor is nonzero. -
is zero, then there is no current. The derivative is zero when o
. . . . . Vy=Vp=V,sinax
the voltage remains constant and does not change with time. From circuit J B
An example would be: dc circuit. From previous page f4-5=C Vi)

_d
ONo current goes through a capacitor in a dc circuit. Tanp =C o Vosinan) But i is from B to A direction:
1,5 =CVywcoswx

Iy =1 =-CV,wcosax

EECS 42 Spring 2000 Lecture 7 C. T. Choi EECS 42 Spring 2000 Lecture 7 C. T. Choi

Capacitors in series and parallel

Capacitor example
* We studied that when R, and R, are in series, the

Req is equal to Ry +R,, the R, for resistor in parallel is:
R1Ro/(R11Ry)

* What about capacitors?

If 2 capacitors are in parallel, the voltage across both would

 Find the v(t) across the capacitor as shown. The current
I, through the current source is constant.
Apply the I-V equation for

capacitor from the previous page
(when the current direction A->B,

. N _
then Voltage is V,g) ’vdD - v be the same (=V)
d B av. . dv av av C =C +C
1 =C—V I1=C,—+C,—=(C, +C =C eq 1 2
A-B dt( AB) ldt 2 ( 1 2) dt ea

If 2 capacitors are in series, the current across both would

In the circuit on the right, current |, is entering cap. be the same (=)

I, :ci(Vc) 0 [—Odt:ch U v, =ar, :L‘)Idt—@ﬂ(
dt C C c av,

I:Cl %

0 The voltage is increasing proportional to time, cap. Is charged. dt dt
23 24

+C2
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Capacitors in series

If 2 capacitors are in series, the current across both would

be the same (=) ;- - 9> (1)
dt dt
dav dV1+dV2 (2)
dt  dt
_~dn _ dv, o dV, _C dV, Substitute into eq (2)
J=C, 1=, 2221771
From eq (1) Ydae T ar G, dr
0 dl ﬁ Q%: (C2+C1) (3)

e dt C, dt

In series, y=y,+y,0 %

Fromeq (1) ;=c, g9 -1  Substitute into eq (3)

d di G
oLt Qg e, oieg = 12

Series capacitors are similar to parallel resistors.
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Inductors
» |deal inductor is a 2-terminal device.

l1-p
Vie=Lor
AB —*+ Y4B
u o—H—-o0
* Where L is a constant called A B
. , . N J
inductance with unit in Henry N e ~
or H, mH, pH, nH. Vag
Notice similarity with capacitance equation [i—p
—_—
a Vi 2
_~d O :
Lin=C (Vi) V. A v,
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Inductors (example)

» Assume there is no current going thru an inductor, at time =0, a
time varying current i(t) is applied thru the inductor terminals. What is

the voltage across the inductor terminals as a function of time.

Apply the inductor equation in the previous page:
V(1) :L%i(t)

If a time varying voltage v(t) is applied across its terminals.
What is the current thru the inductor as a function of time.

Again, apply the inductor equation in the previous page:

_.,d. a1 o g ]
v(t) = Laz(t) 0 di(r) = Zv(t)a’t 0 i(r) =[di(t) = ;(;Zv(t)dt

C. T. Choi

< .

The voltage drop in the resistor is: “1% _l_
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Inductance (example)

» Write a loop equations for the loop
current i(t)

d .
The voltage drop in the inductor is: LE’(’)

So, the loop equation (KVL) is: L%i(t)ﬂ'(t)R =0

What if you have the same circuit in series with a capacitor C?
Recall the I-V eq. for Capacitor: () = c%v(;)

i(1) = Civ(t) 0 dw(t) :ii(z)dz 0 w(r) = Ili(t)dz

—l(t)dt

The voltage drop in the capacitor is: () =/
So, the new loop equation (KVL) is: 7(;)+i(;)R +Iéi(f)df =0
t 2




Parallel/Series Inductors Energy Storage
* Inductor in series is similar to resistor (sum): Element equation energy+ or -? energy eg.
e Resistor R V=IR dissipate energy V2R or IR
Lueries =L+ Ly + Capacitor C I=CdVv/dt  stored 277
* Inductor L V=Ldl/dt stored ??7?
* Inductor in parallel is similar to resistor (product over sum): Assume the capaqltor IS yncharged, . —
t=0, a voltage v(t) is applied. The -—— —
LI, instantaneous power enter the capacitor
Lpara//el - Ll +L2 |S p(t):V(t)|(t) 5 | |
' = .
The energy enter the capacitor (from
time=0 to t)is: :
E = [ p(t)dt = [ v(@)i(t)dt s
29 30

Energy Storage (continue)

E = [y p(t)dt = [y W(0)i(1)dt
Recall the I-V eq. for Capacitor: i) = cdiv(,)
t
o /1
E=J‘éwdt=joij;dt=joz{'d(v2) —
£=2ChoF 2ol

i S -
If the Capacitor is initially uncharged: - T

E :%C[v(t)]2 -

[0 Energy store in a capacitor is: 1/2 CV?

31

Energy Storage (continue)
» Once energy is stored in capacitor, is there way we can

regain the energy? I

Consider the circuit on the right. .
Suppose the capacitor is initially w9 3
charged to voltage V, is to discharge :
to an external circuit.

External
circuit

A

The energy recovered from the capacitor (entered the external
circuit) after an infinite length of time:
E = [y p(t)dt = 5 v (¢)iy (1)dt

Minus sign is due to the
reference direction

o d o @ )2
E=[ v(t)g— C;‘;%ﬁ = —C[PW()dv=~C gd(%)
E= —%c V() —v(0)2]

E=%CW®4

The voltage is fully discharged (V=0) when t=co

32
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Energy storage for inductors

. , di 1
E = [ v(0)i(t)dr = jOL;;Idt = j(’)ELd(f)

o p 1 (0P
= LIl =5 i)

=12 Where | is the final current at time t, assumed
2 the current through the inductor is zero.

33
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Practical Capacitors and inductors

Practical capacitor = ideal capacitor 01 uF = 50%
in series with a resistor 300 W.V.
Whizzo Capacitor Co.

The resistor part dissipates energy, thus,
practical capacitor can never retain
energy definitely, e.g. every DRAM cell
need to be refreshed periodically to
retain its value.

o—{—w—o

(b)

Capacitors use below 1GHz: mica, ceramic,

and tantalum (see Figure a). Capacitors are specified by their
capacitance value, maximum voltage applied

across terminals, their tolerance.

34
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Practical Capacitors and inductors (cont)

» a practical inductor can be replaced by an ideal inductor
in series with a resistor and then in parallel with a capacitor

Again, practical inductor can dissipate energy because
of the present of the resistor.

| £
\

ml |
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