Thévenin \& Norton Equivalent Circuits

Lecture 4 review:

- Nodal analysis
- Loop analysis
- Series and parallel resistors

Today:

- Equivalent circuits (Thévenin \& Norton equivalents)
- Series \& parallel resistors (revisit \& generalize)
- Voltage divider \& current divider
- Real voltmeters \& ammeters

Node Analysis

Goals: Solve all unknown node voltages.

How?

- By writing equations expressing Kirchhoff's current law (KCL) for each node where the voltage is unknown.

Node Analysis (cont.)

5 circuit elements - 4 resistors, 1 voltage source.
4 nodes:
2 unknown voltages: v_{B}, v_{C}
2 known voltages:
1 reference voltage: v_{D}
1 voltage source: $v_{A}=v_{o}$

4 branch currents: $I_{1}, I_{2}, I_{3}, I_{4}$
(but $I_{2}=I_{3}$) => 3 unknown currents

Apply $K C L$ at node B :
Apply $K C L$ at node C :

$$
\frac{V_{0}-V_{B}}{R_{1}}+\frac{V_{C}-V_{B}}{R_{2}}+\frac{V_{D}-V_{B}}{R_{4}}=0
$$

$$
\frac{V_{B}-V_{C}}{R_{2}}+\frac{V_{D}-V_{C}}{R_{3}}=0
$$

But $V_{D}=0$ in both cases

$$
\frac{V_{0}-V_{B}}{R_{1}}+\frac{V_{C}-V_{B}}{R_{2}}+\frac{-V_{B}}{R_{4}}=0
$$

$$
\frac{V_{B}-V_{C}}{R_{1}}+\frac{-V_{C}}{R_{3}}=0
$$

2 equations and 2 unknowns.
Can be solved simultaneously for $V_{B} \& V_{C}$
$V_{C}=V_{0} \cdot \frac{R_{3} R_{4}}{R_{1} R_{2}+R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}+R_{3} R^{2}}$

$$
\left.V_{B}=f\left(V_{0}\right)\right\}
$$

$V_{B}=V_{0} \cdot \frac{R_{4}\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}+R_{3} R_{4}}$

$$
V_{C}=f\left(V_{0}\right) J
$$

What about the 4 branch currents?

$$
\text { if }\left\{\begin{array}{l}
V_{0}=0 \\
V_{B}=V_{C}=
\end{array}\right.
$$

Apply Ohm's law
$I_{1}=\frac{V_{A}-V_{B}}{R_{1}}=\frac{V_{0}-V_{B}}{R_{1}} \quad I_{2}=\frac{V_{B}-V_{C}}{R_{2}} \quad I_{3}=\frac{V_{C}-V_{D}}{R_{3}}=\frac{V_{C}}{R_{3}} \quad I_{4}=\frac{V_{B}-V_{D}}{R_{4}}=\frac{V_{B}}{R_{4}}$

Node Analysis (nodal analysis)

1 Choose a Reference Node $\stackrel{\perp}{=}$
2 Define unknown node voltages (those not fixed by voltage sources)
3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements: for resistor element use Ohm's law)
4 Solve the set of equations (N equations for N unknown node voltages)

Loop Analysis

- In node analysis (or nodal analysis), voltage is obtained first by using KCL, then current is found by using the V-I characteristic of the circuit element (for resistor element:

Ohm's law).

- In loop analysis, current is obtained first by KVL, then voltage is found by using the V-I characteristic (for resistor element: Ohm's law).
In loop analysis, one defines special current known as mesh currents.
In this example, 2 mesh currents is defined, I_{1} and I_{2}

Loop Analysis (Mesh Analysis)

The number of mesh currents $=($ Number of branches) -
(Number of nodes) +1
In this case, there are 4 nodes, 5 branches.
\# of mesh = 5-4 +1 = 2
How to define mesh current?

A lot of freedom, except that every branch of the circuit have at least one mesh current flowing thru it.

The value of the mesh currents are now the unknown to be solved for. The number of equations $=$ The number of unknown mesh current

The equations are obtained by applying Kirchhoff Voltage law on the loops of the mesh currents.

Loop Analysis

Assume I_{1} and I_{2} are defined as the mesh current. Notice the mesh current go thru the whole loop. R_{4} has 2 mesh currents go thru it.

The voltage drop from A to B across R_{1} : $\quad I_{1} R_{1}$

Apply KVL in the loop BCDB:
The voltage drop from B to D

$$
I_{2} R_{2}+I_{2} R_{3}+\left(I_{2}-I_{1}\right) R_{4}=0
$$ across R4: ${ }_{\left(I_{1}-I_{2}\right) R_{4}}$

Apply KVL in the loop ABDA:
$I_{1} R_{1}+\left(I_{1}-I_{2}\right) R_{4}-V_{0}=0$

Loop Analysis

Solving these 2 equations simultaneously:

$$
\begin{aligned}
& I_{1}=V_{0} \frac{R_{2}+R_{3}+R_{4}}{R_{1} R_{2}+R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}+R_{3} R_{4}} \\
& I_{2}=V_{0} \frac{R_{4}}{R_{1} R_{2}+R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}+R_{3} R_{4}}
\end{aligned}
$$

The individual branch current and voltage can be found from I_{1} and I_{2}.

$$
V_{C D}=V_{C}=I_{2} R_{3}=V_{0} \frac{R_{4} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{4}+R_{3} R_{4}}
$$

Loop Analysis (mesh analysis)

1. Select the proper number of mesh current such that at least one mesh current passes through each branch.
2. (a) Express voltage drop across each element as functions of known and unknown mesh currents,
(b) write equations stating that the sum of the voltage drop around closed path are zero. (KVL)
3. Solve equations obtained in step 2 simultaneously for unknown mesh current.
4. Obtain branch currents from the mesh current found in in step 3 and obtain desired node voltages from branch currents and the I-V relationship of the branches.

RESISTORS IN SERIES

(Here its more convenient to use KVL than node analysis)
Circuit with several resistors in series - Can we find an equivalent resistance?

- KCL tells us same current flows through every resistor
- KVL tells us
$\mathrm{I} \cdot \mathrm{R}_{1}+\mathrm{I} \cdot \mathrm{R}_{2}+\mathrm{I} \cdot \mathrm{R}_{3}+\mathrm{I} \cdot \mathrm{R}_{4}=\mathrm{V}_{\mathrm{SS}}$
- Clearly,

$$
\mathrm{I}=\mathrm{V}_{\mathrm{SS}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)
$$

[^0]
WHEN IS VOLTAGE DIVIDER FORMULA CORRECT?

$$
\mathrm{V}_{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \times \mathrm{V}_{\mathrm{SS}}
$$

Correct if nothing else connected to nodes

$$
\mathrm{V}_{2} \neq \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}} \times \mathrm{V}_{\mathrm{SS}}
$$

because R_{5} removes condition of resistors in series - i.e. $i_{3} \neq I$

What is V_{2} ?
Answer:

$$
: \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{5} \|\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)} \times \mathrm{V}_{\mathrm{SS}}
$$

REAL VOLTMETERS

Concept of "Loading" as Application of Parallel Resistors

How is voltage measured? Modern answer: Digital multimeter (DMM) Problem: Connecting leads from voltmeter across two nodes changes the circuit. The voltmeter is characterized by how much current it draws at a given voltage \rightarrow "voltmeter input resistance," $\mathrm{R}_{\text {in }}$. Typical value: $10 \mathrm{M} \Omega$

Example: $\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{R}_{2}=100 \mathrm{~K}, \mathrm{R}_{1}=900 \mathrm{~K} \Rightarrow \mathrm{~V}_{2}=1 \mathrm{~V}$
But if $\mathrm{R}_{\text {in }}=10 \mathrm{M}, \mathrm{V}_{2}^{\prime}=0.991 \mathrm{~V}$, a 1% error

RESISTORS IN PARALLEL

1 Select Reference Node
2 Define unknown node voltages

Note: $I_{s s}=I_{1}+I_{2}$, i.e.,

$$
\mathrm{I}_{\mathrm{SS}}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{2}} \Rightarrow \mathrm{~V}_{\mathrm{X}}=\mathrm{I}_{\mathrm{SS}} \cdot \frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}}=\mathrm{I}_{\mathrm{SS}} \cdot \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

RESULT 1 EQUIVALENT RESISTANCE: $\mathrm{R}_{\|} \equiv \mathrm{R}_{1} \| \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
RESULT 2 CURRENT DIVIDER: $\mathrm{I}_{1}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{1}}=\mathrm{I}_{\mathrm{SS}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

$$
\mathrm{I}_{2}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{2}}=\mathrm{I}_{\mathrm{SS}} \times \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

GENERALIZED PARALLEL RESISTORS

What single resistance $R_{\text {eq }}$ is equivalent to three resistors in parallel?

Note the simplicity if we use conductance instead of resistance

$$
\mathrm{G}_{1} \equiv \frac{1}{\mathrm{R}_{1}}, \text { etc., } \mathrm{G}_{\mathrm{eq}} \equiv \frac{1}{\mathrm{R}_{\mathrm{eq}}}
$$

Then, $\mathrm{G}_{\mathrm{eq}}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3} \quad$ ADD CONDUCTANCES IN PARALLEL

GENERALIZED CURRENT DIVIDER

Current splits among M resistors in parallel
$\begin{gathered}\text { Formal } \\ \text { approach: }\end{gathered} \mathrm{V}=\frac{\mathrm{I}}{\left(\frac{1}{\mathrm{R}_{1}}\right)+\left(\frac{1}{\mathrm{R}_{2}}\right)+\left(\frac{1}{\mathrm{R}_{3}}\right)}$

$I_{3}=\frac{V}{R_{3}}=I\left[\frac{1 / R_{3}}{1 / R_{1}+1 / R_{2}+1 / R_{3}}\right]$
Note $I_{3}=I\left[\frac{G_{3}}{G_{1}+G_{2}+G_{3}}\right]$
$I_{3}=I\left[\frac{R_{1} R_{2}}{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}\right]=I\left[\frac{R_{1} R_{2} /\left(R_{1}+R_{2}\right.}{R_{1} R_{2} /\left(R_{1}+R_{2}\right)+R_{3}}\right] \begin{gathered}\text { Can we get } \\ \text { this result by } \\ \text { inspection? }\end{gathered}$
YES - Consider $R_{1} \| R_{2}$ as "one equivalent resistor"
Then $\mathrm{I}_{3}=\frac{\mathrm{R}_{1} \| \mathrm{R}_{2}}{\mathrm{R}_{1} \| \mathrm{R}_{2}+\mathrm{R}_{3}} \times \mathrm{I}$

$$
=\frac{\mathrm{R}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\mathrm{R}_{3}} \times \mathrm{I}
$$

17

IDENTIFYING SERIES AND PARALLEL COMBINATIONS

Use series/parallel equivalents to simplify a circuit before starting KVL/KCL

EECS 42 Spring 2000 Lecture 5

MEASURING CURRENT

Insert DMM (in current measurement mode) into circuit. But ammeters disturb the circuit. (Note: Ammeters are characterized by their "ammeter input resistance," $R_{\text {in }}$. Ideally this should be very low. Typical value (in $m A$ range) 1Ω.)

Potential measurement error due to non-zero input resistance:

undisturbed circuit

with ammeter

$$
\mathrm{I}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

$$
\mathrm{I}_{\text {meas }}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{\text {in }}}
$$

Example $\mathrm{V}=1 \mathrm{~V}: \mathrm{R} 1+\mathrm{R} 2=1 \mathrm{~K} \Omega \quad, \mathrm{Rin}=1 \Omega$

$$
\mathrm{I}=1 \mathrm{~mA} \quad, \quad \mathrm{I}_{\text {meas }}=\frac{1}{1 \mathrm{~K}+1 \Omega} \cong 0.999 \mathrm{~mA} \quad(0.1 \% \text { error })
$$

IDEAL AND NON-IDEAL METERS

MODEL OF REAL DIGITAL VOLTMETER
Note: $R_{\text {in }}$ may depend on range
$\mathrm{R}_{\text {in }}$ typically $\sim 10 \mathrm{M} \Omega$

IDEAL

MODEL OF REAL DIGITAL AMMETER
Note: $\mathrm{R}_{\text {in }}$ usually depends on current range
$\mathrm{R}_{\text {in }}$ typically $\tilde{<}<1 \Omega$

Circuits on the left side is equivalent to the circuit on the right. Both circuits have a V-I curve equivalent to a $11 \mathrm{k} \Omega$ resistor.

Composite Circuit Element

Find the I-V relationship of the circuit on the right.

KCL equation at node X :
$10^{-2}+\frac{V_{Y}-V_{X}}{100}+I=0$
$V_{X}=V_{Y}+100 I+1$
V is equal to: $\quad V=V_{X Y}+1=V_{X}-V_{Y}+1$ Substitute 2nd eq to 3rd eq:
$V=\left(V_{Y}+100 I+1-V_{Y}\right)+1=100 I+2$
or $_{I=10^{-2} V-20 \times 10^{-3}}$

$$
=10-5-20 \times 10
$$

Equivalent circuit

From the previous slide, ckt (a) and ckt (b) are equivalent. Let's check:
Substitute ckt (b) into the dash line in (c), we get ckt (d). We can solve this by Ohm's law:

$$
\begin{aligned}
& \text { Dhm's law: } \\
& 2=I(100+R)
\end{aligned} \Rightarrow I=\frac{2}{100+R} \quad \text { (from subckt (b)) }
$$

Equivalent circuits

- Two type of equivalent circuits

- Thévenin equivalent circuits
-Norton equivalent circuits

Substitute ckt (c) into the dash line in (c), we get ckt (e). Here we use loop analysis. 2 mesh current I_{1} and I. But I_{1} is already known. It is equal $10^{-2} \mathrm{~A}$.

The next loop equation is:
$100\left(I-I_{1}\right)-1+I R=0$
Solve for I yields: $\quad I=\frac{2}{100+R}$ (subckt (a)) \quad (ckts (d) \& (e) result in identical I)
\therefore The operation of the remainder of a ckt is unaffected when a subcircuit is replaced by its equivalent.

Thévenin Equivalent Circuits

General form of Thévenin equivalent is shown in the ckt on right.
V_{T} is called the Thévenin voltage R_{T} is called the Thévenin resistant By KVL around the loop:

$$
V-V_{T}-R_{T} I=0
$$

Simplifies into:

$$
I=\frac{V}{R_{T}}-\frac{V_{T}}{R_{T}}
$$

With $1 / R_{T}$ as the slope in the I-V graph and $-V_{T} / R_{T}$ as the " y " intercept c. (Remember $y=m x+c$?)

Thévenin equivalent

In order to find the Thévenin equivalent of a circuit, we need to find V_{T} and R_{T}. The next question is how to find V_{T} and R_{T}.

When this circuit is open circuit, $I=0$.

$$
\begin{equation*}
I=\frac{V}{R_{T}}-\frac{V_{T}}{R_{T}} \tag{1}
\end{equation*}
$$

becomes

$$
0=\frac{V_{O C}}{R_{T}}-\frac{V_{T}}{R_{T}} \Rightarrow V_{T}=V_{O C}
$$

We can compute the R_{T} by using the $I_{S C}$ (short circuit current):
$I_{S C}=\frac{0}{R_{T}}-\frac{V_{T}}{R_{T}} \Rightarrow R_{T}=-\frac{V_{T}}{I_{S C}}=-\frac{V_{O C}}{I_{S C}}$

Thévenin equivalent example cont.

Next we calculate $I_{S C}$ as shown in circuit on the right.
Apply KCL at node A:
$\frac{V_{0}-0}{R_{1}}+\frac{0-0}{R_{2}}+I_{S C}=0 \quad \Rightarrow \quad I_{S C}=-\frac{V_{0}}{R_{1}}$
From previous slide,

$$
R_{T}=-\frac{V_{O C}}{I_{S C}}(\mathrm{c}
$$

Substitute (b) and (a) into (c)
$R_{T}=V_{O C}\left(\frac{R_{1}}{V_{0}}\right)=V_{0}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)\left(\frac{R_{1}}{V_{0}}\right)=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
\therefore Circuit © shows a Thévenin equivalent of the original circuit.

Thévenin equivalent example

Find the Thévenin equivalent circuit.
We can solve this by 2 steps:
(1) Find V_{T} by finding $V_{O C}$
(2) Find R_{T} by find $I_{S C}$
V_{OC} can be found by inspection (it is a voltage
 divider):

$$
\begin{equation*}
V_{T}=V_{O C}=V_{0} \frac{R_{2}}{R_{1}+R_{2}} \tag{a}
\end{equation*}
$$

Thévenin equivalent (alternative method)

There is an alternative method for finding R_{T} :

- Locate all independent voltage \& current source inside the subcircuit whose equivalent is to be found.
-Replace all independent voltage sources by short circuits -Replace all independent current sources by open circuits -Compute the resistance between the 2 terminals

Thévenin equivalent (alternative method) example

Find the R_{T} by the alternative method:

- Replace the voltage source by short circuit (current source by open circuit).
- Measure the resistance across

the 2 terminals.
- The modified circuit becomes the circuit on the right.
$R_{T}=R_{1} \| R_{2}$

Thévenin equivalent (time varying source)
This is identical to the previous example except that it has a time varying source.

The method is the same. The only difference is the source. Instead of V_{0}, we use V_{1} as source:
$V_{T}=V_{O C}=V_{0} \frac{R_{2}}{R_{1}+R_{2}}$ (time invariant source)
$V_{T}=V_{O C}=V_{1} \frac{R_{2}}{R_{1}+R_{2}}=160 \sin (\omega t) \frac{R_{2}}{R_{1}+R_{2}}$
$R_{T}=V_{O C}\left(\frac{R_{1}}{V_{1}}\right)=V_{1}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)\left(\frac{R_{1}}{V_{1}}\right)=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
(time varying source) (time varying source) In this case, RT does not depend time, thus, the same.

Norton Equivalent Circuits

Principle of the Norton equivalent circuit is similar to that of the Thevenin equivalent circuit. Consider the general form of Norton equivalent circuit below*
We can find the I-V equation by applying KCL at node A:
$I-\frac{V}{R_{N}}+I_{N}=0 \quad \Rightarrow \quad I=\frac{V}{R_{N}}-I_{N}$
Next we need to find I_{N} and R_{N}.
 Use similar strategy as in Thevenin equivalent.
First short circuit the 2 terminals yields (1 becomes $\mathrm{I}_{\mathrm{SC}}, \mathrm{V}=0$ in eq. 1): $I_{S C}=\frac{0}{R_{N}}-I_{N} \Rightarrow I_{N}=-I_{S C}$
Next we open circuit the terminals ($\mathrm{I}=0, \mathrm{~V}=\mathrm{V}_{\mathrm{OC}}$ in eq. 1):
$0=\frac{V_{O C}}{R_{N}}-I_{N} \quad \Rightarrow \quad R_{T}=-\frac{V_{O C}}{I_{S C}}$

Norton equivalent circuits (example cont.)

(c)

(d)

Next, find V_{OC} (from ideal voltmeter connected to terminals $\mathrm{A} \& \mathrm{~B}$)
Apply KCL at node A (assume open circuit, $\mathrm{I}=0$) (see circuit c):
$\frac{V_{0}-V_{O C}}{R_{1}}+I_{0}=0 \quad$ or $\quad V_{O C}=I_{0} R_{1}+V_{0}$
Use V_{OC} and I_{SC}, we can find I_{N} and $\mathrm{R}_{\mathrm{N}}\left(I_{N}=-I_{S C}, R_{T}=-\frac{V_{O C}}{I_{S C}}\right)$: $I_{N}=\frac{V_{0}}{R_{1}}+I_{0} \quad$ and $\quad R_{N}=R_{1}$

[^0]: Thus, equivalent resistance of resistors in series is the simple sum

