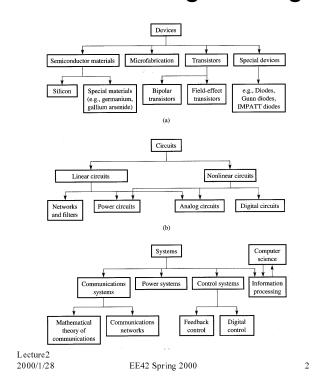
EE42 Introduction to Electronics for CS

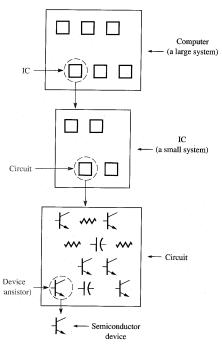
Course content:

- Basic circuit theory
- Emphasize digital circuits
- Performance limitation of digital circuits

(see syllabus for details)

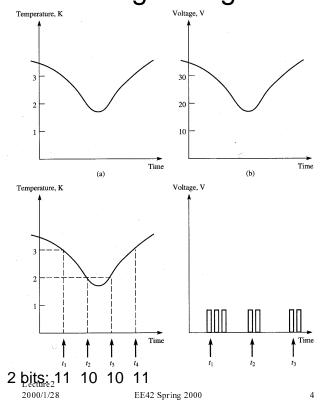

Course web page:

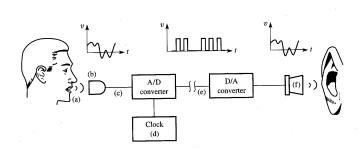
http://www-inst.eecs.berkeley.edu/~ee42


Lecture2 2000/1/28

EE42 Spring 2000

Electrical Engineering

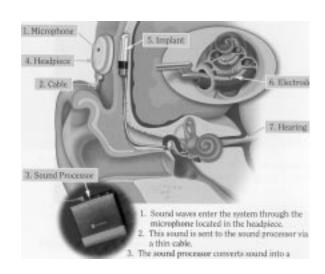

Systems, Circuits, Devices (transistors)


Lecture2 2000/1/28

EE42 Spring 2000

Analog vs Digital

Analog to Digital Digital to Analog

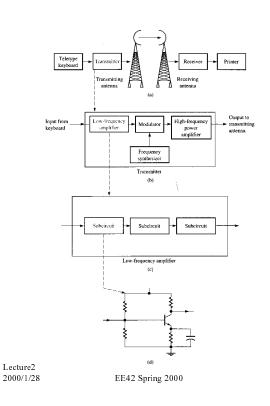


Lecture2 2000/1/28

EE42 Spring 2000

5

Cochlear Implant



Lecture2 2000/1/28

EE42 Spring 2000

6

Building blocks Approach

Electrical Quantities (SI units)

Quantity	Symbol	Unit	Abr of unit
Length	1	meter	m
Mass	m	kilogram	kg
Time	t	second	sec
Energy	E	joule	J
Force	F	newton	N
Power	Р	watt	W
Charge	Q	coulomb	С
Current	l or l	Ampere	Α
Potential	V or v	volt	V
Resistance	R	ohm	Ω
Capacitance	С	farad	F
Inductance	L	henry	Н

Lecture2 2000/1/28

EE42 Spring 2000

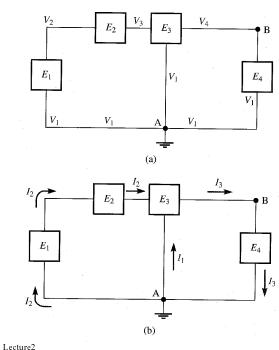
8

Electrical Quantities

Prefix	Abr.	Multiplies Unit by
giga	G	10 ⁹
mega	М	10 ⁶
kilo	k	10 ³
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²

Lecture2 2000/1/28

EE42 Spring 2000

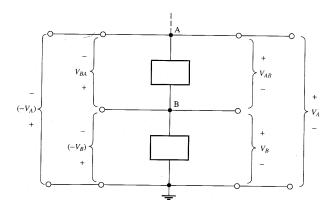

11

Symbols Used in Circuit Diagram

TABLE 1.2 Symbols Used in Circuit Diagrams

Symbols Used in This Book	Meaning	Alternate Symbol	
	Wires connected.		
	Wires not connected.		
	The current in the wire has the value <i>I</i> . Its reference direction is indicated by the arrow.		
V _A	The potential at the indicated node is V_A with respect to ground.		
+ v -	The terminal marked "+" is higher in potential than the terminal marked "-" by the voltage ν .		
<u> </u>	Ground; the potential at the indicated node is defined to be zero.	<i></i>	

Ground



2000/1/28

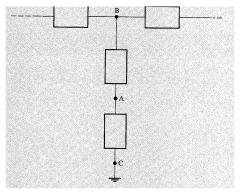
EE42 Spring 2000

Voltage Symbols

EE42 Spring 2000

Use the same convention consistently:

$$V_{AB} = -V_{BA}$$
 $V_{AB} = V_{A} - V_{B}$
 $V_{BA} = V_{B} - V_{A}$
 $V_{B0} = -(V_{0B})$
 $V_{B} - V_{0} = -(V_{0} - V_{B}) = V_{B} = -(-V_{B})$


Lecture2 2000/1/28

2000/1/28

EE42 Spring 2000

10

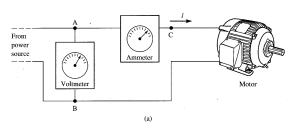
Exercise

V_A (the potential at A with respect to ground (node C) is 4V, and V_{BA} =-7V. What is V_R ? V_C ?

$$V_{BC} = V_B - V_C = V_B$$
 $= V_{BA} + V_{AC}$
 $= (V_{BA}) + (V_A - V_C)$
 $= -7V + 4V = -3V$
 $V_C = 0V$.

Lecture2
2000/1/28
EE42 Spring 2000

EE42 Spring 2000

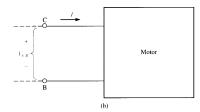

13

15

Example

From measurement a direct current (dc) produces a mechanical output of 41.3 hp. The voltmeter indicates V_{AB}=442 v. and the ammeter tells us that a current of 83.1 A in the direction of I. (1hp=746W)

- (a) what is the efficiency of the motor if we assume $V_{AC} = 0$?
- (b) Efficiency if $V_{AC} = 20v$?



Lecture2 2000/1/28

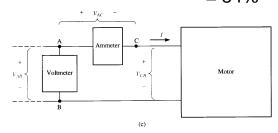
EE42 Spring 2000

14

Example (cont.)

Power entering the motor = V_{CB} /

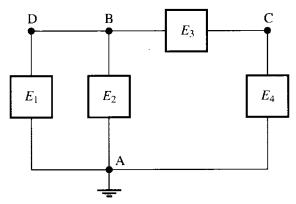
(a) $V_{AB}=V_{AC}+V_{CB}$, but we assume $V_{AC}=0$ VAR=VCR


$$PIN = (442)(83.1) = 36700W = 36.7kW$$

= 36700W (1 hp/746W) = 49.2 h.p.

Lecture2 2000/1/28

EE42 Spring 2000


Example (cont.)

Efficiency $E = P_{in}/P_{out}$ =41.3/49.2=0.84= 84%

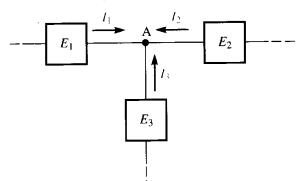
(b)
$$V_{AB}=V_{AC}+V_{CB}$$

 $\Rightarrow V_{CB}=V_{AB}-V_{AC}$
 $V_{AC}=20v$.

Circuit Nodes & Branches

Points A, B, C, D (or nodes A, B, C, D) Branches E₁, E₂, E₃, E₄

Nodes A is the reference node or ground (notice the ground symbol). Point D and B are located in the same node.


Lecture2 2000/1/28

EE42 Spring 2000

17

Kirchhoff's Current Law

- Whatever current flows in one end must flow out the other end of a wire.
- The sum of all currents entering a node is zero.

 I_1 entering node A through element E_1 is +15mA, I_2 equals +32mA, what is I_3 ? According to KCL: sum of all current entering node A is zero $I_1+I_2+I_3=0$ or $I_3=-I_1-I_2$ $I_3=-15\text{mA}-32\text{mA}=-47\text{mA}$.

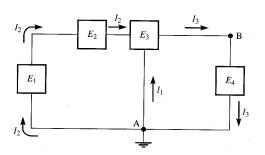
Lecture2 2000/1/28

EE42 Spring 2000

18

KCL (cont.)

KCL can be stated as:


the sum of all currents leaving a node is zero.

$$-I_1 - I_2 - I_3 = 0$$

$$-(l_1+l_2+l_3)=0$$

$$-(0) = 0$$

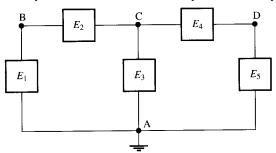
Exercise

 $I_2 = 4.7 \text{mA}, I_3 = 3.3 \text{mA}$ What is I_1 ?

Apply KCL: Sum of all current entering $E_3 = 0$

$$I_1+I_2 - I_3 = 0$$

 $I_1 = -I_2+I_3 = -4.7\text{mA} + 3.3\text{mA} = -1.4\text{mA}$

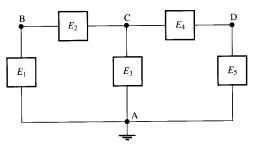

Lecture2 2000/1/28

0/1/28 EE42 Spring 2000

19

Kirchhoff's Voltage Law

KVL: the sum of all the voltage drops around a complete loop


Voltage at node A, B, C, D is V_A , V_B , V_C , V_D respectively. Write an equation expressing KVL for the loop $A \rightarrow B \rightarrow C$ $\rightarrow D \rightarrow A$.

Lecture2 2000/1/28

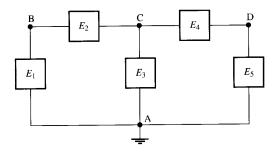
EE42 Spring 2000

21

KVL (cont.)

We shall add the "voltage drop" as we move around the loop.

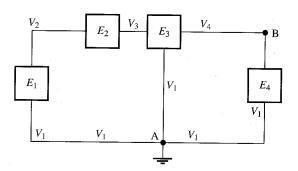
Because of the ground symbol, node A has 0 V.


The drop from node A to B is : $V_{AB} = V_A - V_B = 0 - V_B = -V_B$ Voltage drop from B to C is: $V_{BC} = V_B - V_C$

Lecture2 2000/1/28

EE42 Spring 2000

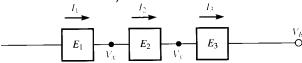
22


KVL (cont.)

Voltage drop across E_1 + voltage drop across E_2 + voltage drop across E_4 + voltage drop across E_5 = 0

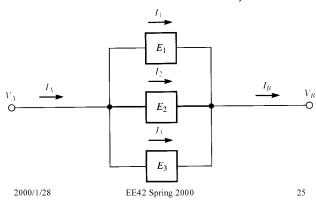
$$-V_B + (V_B - V_C) + (V_C - V_D) + (V_D - 0) = 0$$

Exercise 1.4



Let
$$V_1 - V_2 = 6.1V$$

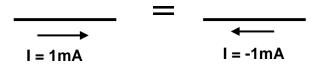
 $V_3 - V_1 = 4.4V$
 $V_3 - V_2 = ?$


$$V_1 - V_2 + V_3 - V_1 = 6.1 + 4.4V$$

 $V_3 - V_2 = 10.5V$

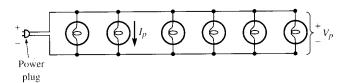
Series and Parallel

Series connection (take out one will "open circuit" the whole wire)



Parallel connection (take out one circuit element would not affect the whole circuit)

Summary


• The current at a point is equal to the amount of charge passing through that point each second. In SI, charge is in coulombs and current in amperes. Current can be positive or negative, but you have to stick to the convention:

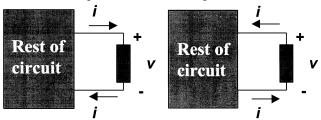
- A voltage is a difference in electrical potential between two points.
- It is possible to designate any single point in a circuit as "ground," meaning that by definition the potential at that point is zero.

Series and Parallel (cont.)

Parallel connection

Series connection V₀ Power plug

Lecture2 2000/1/28


2000/1/28

EE42 Spring 2000

26

Summary (cont.)

• Power is transferred from one part of the circuit to another whenever a current flows between 2 points at different potential.

By using the "associated reference direction", when the product of VI (= Power) > 0, the circuit element is absorbing.

When VI < 0, the circuit element is releasing power.

Kirchoff's Current law states that the sum of all current entering a node is zero.

Kirchoff's voltage law states that the sum of all voltage "drop" around any closed loop is $_{\rm Lectur}$ zero.

EE42 Spring 2000