Introduction to Digital Systems

Lecture 9 review: (11.1-11.3)

- Digital Building Blocks
- Logic Blocks
- Flips-Flips

Today: (12)

- Bits and bytes
- Small digital systems
- Digital signal processing
- Introduction to computer architecture

Digital Building Blocks

- Logical $1 \equiv 5 \mathrm{~V}$
- Logical $0 \equiv 0 \mathrm{~V}$
(negative logic)
- Logical $1 \equiv 0 \mathrm{~V}$
- Logical $0 \equiv 5 \mathrm{~V}$

Digital Blocks

- 2 Types of Digital Blocks
- Combination logic blocks (e.g. AND gate) chapter 11.2
- Sequential blocks (e.g. Flips Flops) chapter 11.3
- Logic blocks have one/several inputs and one output

There can be different voltage value for different digital circuit device. Logical $1 \equiv 3.3 \mathrm{~V}$ or Logical $1 \equiv 2 \mathrm{~V}$

Digital Control Example: Hot Tub Controller

Algorithm: Turn on tub heater if Temp less than desired Temp ($\mathrm{T}<\mathrm{T}_{\text {set }}$) and motor is on and key switch to activate hot tub is closed. Suppose there is also a "test switch" which temporarily activates heater when depressed.

Approach: Series switches: $C=$ key switch, $B=$ relay closed if motor is on, A = bimetallic thermostatic switch. $\mathrm{T}=$ Test switch.

Simple Schematic Diagram of Possible Circuit:

Evaluation of Logical Expressions with "Truth Tables"

Truth Table for Heater Algorithm

A	B	C	T	H
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Digital Heater Control Example (cont.)

Logical Expression : To create logical values we will define a closed switch as "True", ie boolean 1 (and thus an open switch as 0).
Heater is on ($H=\mathbf{1}$) if (A and B and C are 1) or T is 1

- Logical Statement: $H=1$ if A and B and C are 1 or T is 1 .
- Remember we use "dot" to designate logical "and" and " + " to designate logical "or" in switching algebra. So how can we express this as a Boolean Expression?

Logical Expressions to express Truth Tables

We need a notation for logic expressions.

Standard logic notation and logic gates:

AND: "dot"
Examples: $\mathrm{X}=\mathrm{A} \cdot \mathrm{B} ; \mathrm{Y}=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}$
OR : "+ sign"
Examples: $\mathrm{W}=\mathrm{A}+\mathrm{B} ; \mathrm{Z}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
NOT: "bar over symbol for complement" Example: $Z=\bar{A}$

With these basic operations we can construct any logical expression.

Digital Heater Control Example (cont.)

The Important Logical Functions

The most frequent (i.e. important) logical functions are implemented as electronic "building blocks" or "gates".

We already know about AND, OR and NOT What are some others:

Combination of above: inverted AND = NAND, inverted $\mathrm{OR}=\mathrm{NOR}$

And one other basic function is often used: the "EXCLUSIVE OR" ... which logically is "or except not and"

Some Important Logical Functions

- "AND"
$\mathrm{A} \cdot \mathrm{B} \quad($ or $\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C})$
- "OR"
$\mathrm{A}+\mathrm{B} \quad($ or $A+B+C+D \ldots)$
- "INVERT" or "NOT"
$A=$ not A or A-inverted
- "not AND" = NAND
$\overline{\mathrm{AB}} \quad($ only 0 when A and $B=1)$
- "not OR" = NOR
$\overline{\mathrm{A}+\mathrm{B}} \quad($ only 1 when $\mathrm{A}=\mathrm{B}=0$)
- exclusive OR = XOR
$\mathrm{A} \oplus \mathrm{B}$ (only 1 when A, B differ)
i.e., $A+B$ except $A \cdot B$

2 input OR gate. 3 input OR gate

(a)

(b)

(a)

Input	Input	Input	Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

(b)

These are circuits that accomplish a given logic function such as "OR". We will shortly see how such circuits are constructed. Each of the basic logic gates has a unique symbol, and there are several additional logic gates that are regarded as important enough to have their own symbol. The full set is: AND, OR, NOT, NAND, NOR, and EXCLUSIVE OR.
AND

NAND

OR

NOR

NOT

$B-C=\overline{A+B}$
EXCLUSIVE OR

EECS 42 Spring 2000 Lecture 10

The basic gates in Digital Electronics

-NOT/INVERSE/COMPLEMENT

$\begin{array}{c}\text { Input } \\ \text { A }\end{array}$	$\begin{array}{r}\text { Output } \\ \text { F }\end{array}$
$\mathbf{0}$	1
1	0
	(b)

- 3 input AND gate

(a)

Input	Input	Input	Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

- 3 input NAND (NOT-AND) gate

(a)

Input	Input	Input	Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

The basic gates in Digital Electronics

- NOR (NOT-OR)

(a)

Input \mathbf{A}	Input B	Input \mathbf{C}	Output \mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

(b)

Logic Synthesis

- So far, when given a logic blocks \rightarrow generate the truth table

Can we reverse the process? Logic synthesis

- We need a certain truth table \rightarrow Find the logic blocks to implement it
- For example, a 2 inputs (A, B) and 1 output (F)
$F=A B$
$F=A \bar{B}$
$F=\bar{A} B$
$F=\overline{A B}$

(d)
- $F=A+B$
- $F=A \cdot B$
- $F=\overline{A+B}$
- $F=\frac{A+B}{A \bullet B}$

A OR B
A AND B
NOT (A OR B) alternative notation: (A+B)' NOT (A AND B) (A •B)

Given $\quad F=A(\bar{A}+B)$

+ draw the logic blocks
+ write the truth table

- 3 inputs: NOT A, A, B $\cdot{ }^{-}$F1 = (NOT A) OR B
- $\mathrm{F}=\mathrm{A}$ AND F 1

Logic Synthesis

- Next, we can combine these blocks $A B, A^{\prime}, A^{\prime} B,(A B)^{\prime}$ through an "OR" gate $\rightarrow A B+A B$ '..
- This is called the Sum-of-products method
- Example $F=A^{\prime} B+A B$ can be implemented by the following:

- On the other hand, $F=A^{\prime} B+A B$ can be simplified into $F=\left(A^{\prime}+A\right) B=(1) B=B$
- Use logic blocks to perform binary arithmetic (half adder):
- 2 binary inputs A and B, the result is 2 bits CD
A
$+\quad B$

The truth table is:	Input		Output	
	A	B	C	D
0	0	0	0	
0	1	0	1	
	1	0	0	1
1	1	1	0	

Logic Synthesis (example)

- Using Sum-of-product method:
- We only tackle the C and D with a "one" in the truth table:
- for output $D=1$ (second row in the table), $A=0, B=1 \rightarrow F_{1}=A^{\prime} B$
- for output $D=1$ (third row in the table), $A=1, B=0 \rightarrow F_{2}=A B$
- for output C to be equal to $1, A=1, B=1 \rightarrow F_{3}=A B$
- These 3 entries can be "realized" by the following:

Practical logic blocks: Electrical Characteristics

Flips Flops (Sequential Blocks)

- Output of logic blocks depend on input at any instant*
- Output of sequential blocks depend on the previous input as well as the current input (in other word, it has "memory" effect)

3 types of Flips Flops: S-R Flip Flops, D Flip Flops, J-K Flip Flops

S-R Flips Flops

- If $S=0$ and $R=0, Q$ does not change.
- Rule 2
- If $S=0$ and $R=1$, then regardless of past history $\mathrm{Q}=0$
- Rule 3
- If $S=1$ and $R=0$, then regardless of past
 history $\mathrm{Q}=1$
- Rule 4

S-R Flips Flops (example)

- $S=0$ and $R=0 \rightarrow$ no change in Q and Q^{\prime}
- $S=1 \rightarrow Q=1, Q^{\prime}=0$
- $R=1 \rightarrow Q=0, Q^{\prime}=1$
- $S=1$ and $R=1 \rightarrow Q=1, Q^{\prime}=1$ (don't use)

D Flips Flops

- Clocked Flip Flops
- Flip Flops does not change state until an instruction is given thru the clock (CK)
-Truth Table of D Flip Flops

D	Q (before)	\mathbf{Q} (after)
0	0	0
0	1	0
1	0	1
1	1	1

Summary

- Digital blocks
- Combinational blocks
- output of a logic blocks depends on the inputs at any instant of time
- Examples are: AND, OR, inverter (COMPLEMENT), NAND,

NOR, XOR (exclusive or)

- Sequential blocks
- Sequential blocks remember inputs applied at earlier time
- Examples are: S-R flip flops, D flip flops, J-K flip flops..
- Mathematical expressions for logical operations are written using Boolean algebra.
- The logic blocks is specified by a table showing the outputs that result from various combination of input. This table is known as the truth table
- Any truth table can be realize by appropriate connection of inverters, AND gates, and one OR gate, using the sum-of-product method. However, this may not be the simplest realization of the truth table.
- Different flip flops exist: S-R FF, D FF, differing in ways instruction for storing information are applied. S-R FF can be built by 2 NAND gates, D clocked FF is built by more logic gates, but are simpler to use.

D Flips Flops (example \& realization)
Propagation delay - a small delay between the change CLK and the time Q actually changed. (this is not shown in the timing diagram)

D Flip Flops realized using 6 NAND gates

16M RAM contains $16 \times 1024 \times 1024$ flip flops

EECS 42 Spring 2000 Lecture 10
C. т. Choi

So Why Digital?

(For example, why CDROM audio vs vinyl recordings?)

- Digital signals can be transmitted, received, amplified, and retransmitted with no degradation.
- Binary numbers are a natural method of expressing logical variables.
- Complex logical functions are easily expressed as binary functions (e.g., in control applications ... see next page).
- Digital signals are easy to manipulate (as we shall see).
- With digital representation, we can achieve arbitrary levels of "dynamic range," that is, the ratio of the largest possible signal to the smallest than can be distinguished above the background noise
- Digital information is easily and inexpensively stored (in RAM, ROM, EPROM, etc.), again with arbitrary accuracy.

How do you represent number digitally?

10 V in decimal becomes:

- " 13 " in base 7
- " 14 " in base 6
- " 22 " in base 4
- "1010" in Binary (base 2)
- A binary digit (bit) can store 0 or 1
 and can be stored in a flip flop
- 4-bit can store number between 0000 to 1111 (16 different numbers)
- N -bit can store 2^{N} different numbers. (8 bit can store 256 , 10 bit $\rightarrow 1024$, 15 bit $\rightarrow 32768$ ($2^{5} \times 1024$)...

4-bit flip flops or registers

- 4 bits are transmitted simultaneously, but 4-bit byte is transmitted serially.
- FF5-FF8 are called the storage register or data latch.

cliock

Binary transmission

- Suppose we need to transmit 4 bit in binary.
- We can transmit 4 bit serially (one bit at a time) or simultaneously (four bit together)

Decimal, binary, and hexadecimal number

- Convert from decimal to binary
- $245_{10}=11110101_{2}$
- Convert from binary to decimal

$11110101_{2}=1 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}$
$+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=128+64+32+16+0+4$
$+0+1$

Decimal, binary, and hexadecimal number

- It is clumsy to write 11110101_{2}
- Can change it into hexadecimal (base 16
- $11110101_{2}=$? 16
- Convert from hexadecimal to binary?
- Convert from hexadecimal to decimal?
$-\mathrm{AEC}_{16}=$?
$-\mathrm{AEC}_{16}=$?
- Convert from decimal to hexadecimal?
$-245_{10}=$?
16

Decimal	Binary	Hexadecimal
$\mathbf{0}$	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	10000	10
17	10001	11
18	10010	12
19	10011	13
\vdots	\vdots	\vdots

Decimal, binary, and hexadecimal number

- Multiplication?
- $9 C_{16} \times \mathrm{A3}_{16}=$?

Small digital systems (shift registers)

- Bit is shift to the right 1 clock cycle at a time

- A 4-bit shift register can be implemented by 4 D flips flops connected serially -- output Q1 of the 1st FF is connected to the input D2 of the 2nd FF.

1-bit counter

State table

- 3-bit ripple counter

State diagram

D/A converters

- 3 bit digital to analog (D/A) converter

Digital Signal Processing

- Analog signal \rightarrow digital signal
(need Analog to Digital converter or A/D converter)
- Sampling
- Nyquist sampling theorem
$\mathrm{T}_{\mathrm{s}}<1 /\left(2 \mathrm{f}_{\text {max }}\right)$

D/A converters (continue)

$$
v_{\text {out }}=-\left[Q_{1}+2 Q_{2}+4 Q_{3}\right]
$$

- If Q_{1}, Q_{2}, Q_{3} are:

- Then $\mathrm{V}_{\text {out }}$ will be:

Analog to Digital (A/D) converters

- Clock
- Counter
- D/A convert
- Comparator
- Control

Percentage quantization error $=100 \times 1 /\left(2^{\mathrm{N}}-1\right)$, for a N -bit system Example: 16 bit CD system has a quantization error of $0.001526 \% \equiv$ Signal/Noise ratio of $=20^{\star} \log$ (error) $=96.3 \mathrm{~dB}$

Compact Disc

A/D converters (example)

- Suppose the speed of an 8-bit A/D converter is limited by the counter, which has a maximum speed of 4×10^{7} count per second. Estimate the maximum number of A/D conversions per second that can be obtained.

Maximum speed (counter) of 4×10^{7} count per second
Maximum number of count per signal (worse case) is $2^{8}-1=255$ count
Minimum time per count $=255 /\left(4 \times 10^{7}\right)=6.375 \mu \mathrm{sec}$
Maximum number of conversion is the reciprocal of that $=1 / 6.375 \mu \mathrm{sec})=157,000$ time per second.

Summary

- A register is a set of N FF, which can store N -bit of info. 4-bit bytes are conveniently represented by hexadecimal digit. A number can be represented by binary, decimal, or hexadecimal form.
- A shift register is a small system that collects bytes of data when the bits are arriving serially.
- Counters are small systems that move thru a cycle of states, moving 1 step for each input.
- Usefully tool for analyzing sequential system are timing diagrams, states tables and state diagrams.
- Analog to digital and digital to analog converters are used as interfaces between analog and digital system.

WHAT ARE I-V CHARACTERISTICS OF AN ACTUAL HIGH-GAIN DIFFERENTIAL AMPLIFIER ? (optional)

- Circuit model gives the essential linear part

- But V_{0} cannot rise above some physical voltage related to the positive power supply V_{CC} ("upper rail") $\mathrm{V}_{0}<\mathrm{V}_{+ \text {RAIL }}$
- And V_{0} cannot go below most negative power supply, V_{EE} i.e., limited by lower "rail" $\mathrm{V}_{0}>\mathrm{V}_{\text {-RAIL }}$

Example: Amplifier with gain of 10^{5}, with $\max V_{0}$ of 3 V and $\min V_{0}$ of $-3 V$.

EECS 42 Spring 2000 Lecture 10

EASY WAY TO GET ANSWER

 FOR OP-AMP CIRCUITS (optional)
"Ideal Op-Amp Technique":

$$
\text { (1) } \mathrm{V}_{+} \cong \mathrm{V}_{-}
$$

Why?
V_{0} CANNOT $\rightarrow \infty$, BUT

$$
\text { order that } V_{0}^{+}=A\left(V_{+}-V_{-}\right)
$$

Finite infinite must be zero

$$
\text { (2) } \begin{aligned}
& \mathrm{i}_{\mathrm{IN}+} \approx 0 \\
& \mathrm{i}_{\mathrm{IN}-} \approx 0
\end{aligned}
$$

Why?
(a) $R_{\text {IN }}$ large by design
(b) $\mathrm{V}_{+} \rightarrow \mathrm{V}_{(-)} \Rightarrow$ voltage difference across $\mathrm{R}_{\mathrm{IN}} \rightarrow 0$
With ideal op-amp technique we can analyze all sorts of negative feedback circuits - see reader

Examples: (1) unity gain follower
(2) amplifiers
(3) summing amplifiers

OP-AMPS AND COMPARATORS (optional)

A very high-gain differential amplifier can function either in extremely linear fashion as a very nonlinear device - a comparator.

1V Comparator

Open loop or Positive
Feedback: Comparator

EECS 42 Spring 2000 Lecture 10
C. т. Choi

MULTI-BIT A/D AND D/A CONVERSION

Example: Digital representation of sound to analog

$$
\text { (so you can hear it!) } \rightarrow \text { D/A conversion }
$$

The summing junction op-amp provides a simple means of D/A conversion via weighted-adder D/A converter

Another circuit to do this is shown in reader (R-2R resistive ladder D/A converter

Yet another way (not shown) is to sum charges instead of current with capacitor networks

Binary number	Analog output (volts)
0000	0
0001	. 5
0010	1
0011	1.5
0100	2
0101	2.5
0110	3
0111	3.5
1000	4
1001	4.5
1010	5
1011	5.5
1100	6
1101	6.5
1110	7
1111	7.5
4 4	
MSB LS	B 48

