EECS 42 Spring 2000 Lecture 10

C.T.Choi

4

А 0

> 0 0 0

> 0 0

Ω

0

Truth

Table for Heater Algorithm					
В	С	Т	Н		
0	0	0	0		
0	1	0	0		
1	0	0	0		
1	1	0	0		
0	0	0	0		
0	1	0	0		
1	0	0	0		
1	1	0	1		
0	0	1	1		
0	1	1	1		
1	0	1	1		
1	1	1	1		
0	0	1	1		
0	1	1	1		
1	0	1	1		
1	1	1	1		

EECS 42 Spring 2000 Lecture 10

C.T.Choi

5

7

Digital Heater Control Example (cont.)

Logical Expression : To create logical values we will define a closed switch as "True", ie boolean 1 (and thus an open switch as 0).

Heater is on (H=1) if (A and B and C are 1) or T is 1

- Logical Statement: H = 1 if A and B and C are 1 or T is 1. ٠
- Remember we use "dot" to designate logical "and" and "+" to designate ٠ logical "or" in switching algebra. So how can we express this as a **Boolean Expression?**
- Boolean Expression: $H = (A \cdot B \cdot C) + T$

Logical Expressions to express Truth Tables

We need a notation for logic expressions.

Standard logic notation and logic gates:

AND: "dot"	Examples: $X = A \cdot B$; $Y = A \cdot B \cdot C$
------------	---

OR : "+ sign" Examples: W = A+B; Z = A+B+C

NOT: "bar over symbol for complement" Example: $Z = \overline{A}$

With these basic operations we can construct any logical expression.

EECS 42 Spring 2000 Lecture 10

C.T.Choi

6

8

The Important Logical Functions

The most frequent (i.e. important) logical functions are implemented as electronic "building blocks" or "gates".

We already know about AND, OR and NOT What are some others:

Combination of above: inverted AND = NAND, inverted OR = NOR

And one other basic function is often used: the "EXCLUSIVE OR" ... which logically is "or except not and"

C. T. Choi

C. T. Choi

EECS 42 Spring 2000 Lecture 10

Logic Gates

C.T.Choi

C.T.Choi

16

- Use logic blocks to perform binary arithmetic (half adder):
- 2 binary inputs A and B, the result is 2 bits CD ٠

А В

CD

Input		Outp	ut
А	В	С	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
	A 0	A B 0 0	A B C 0 0 0

17

C. T. Choi

5404 (W

EECS 42 Spring 2000 Lecture 10

٠

EECS 42 Spring 2000 Lecture 10

Logic Synthesis (example)

- Using **Sum-of-product** method:
- We only tackle the C and D with a "one" in the truth table: •
 - for output D = 1 (second row in the table), A = 0, B = 1 \rightarrow F₁ = A'B
 - for output D = 1 (third row in the table), A = 1, B = $0 \rightarrow F_2 = AB'$
 - for output C to be equal to 1, A=1, B=1 \rightarrow F₃ = AB
- These 3 entries can be "realized" by the following:

18

C.T.Choi

EECS 42 Spring 2000 Lecture 10 **Practical logic blocks** 💋 Logic Data Book DM54/DM74 Connection Diagrams Logic Data Book DM54/DM74 Connection Diagram $= \overline{A + B}$ 12 Triple S 54LS12 (J,W): 74LS12 (N 13 pm 7404 (N) 74H04 (N) 74L04 (N) 74L904 (N

FIGURE 11.18(a) Typical SSI logic packages. (Courtesy of National Semiconductor Corp.)

5402 (W)

FIGURE 11.18(b)

Practical logic blocks: Electrical Characteristics

C. T. Choi

- Output of logic blocks depend on input at any instant*
- Output of sequential blocks depend on the previous input as well as the current input (in other word, it has "memory" effect)

3 types of Flips Flops: S-R Flip Flops, D Flip Flops, J-K Flip Flops EECS42 Spring 2000 Lecture 10

S-R Flips Flops

- If S=0 and R=0, Q does not change.
- Rule 2

Rule 1

 If S=0 and R=1, then regardless of past history Q=0

• Rule 3

 If S=1 and R=0, then regardless of past history Q=1

• Rule 4

C.T.Choi

22

•Why do we need to guess Q and Q'? The reason is that FF needs more than the current inputs, different current state of Q and Q' will generate different Q, Q' output. And we don't know what is the current Q and Q', so we can guess it in conjunction with the inputs to generate a truth table. •S = 0 and R = 0 \rightarrow no change in Q and Q'

•S = 1
$$\rightarrow$$
 Q = 1, Q' = 0
•P = 1 \rightarrow Q = 0 Q' = 1

•R = 1
$$\rightarrow$$
 Q = 0, Q' = 1

•S = 1 and R = 1 \rightarrow Q = 1, Q' = 1 (don't use)

EECS 42 Spring 2000 Lecture 10

S-R Flips Flops (example)

- S = 0 and $R = 0 \rightarrow$ no change in Q and Q'
- $S = 1 \rightarrow Q = 1, Q' = 0$
- $R = 1 \rightarrow Q = 0, Q' = 1$
- S = 1 and R = 1 \rightarrow Q = 1, Q' = 1 (don't use)

EECS 42 Spring 2000 Lecture 10

D Flips Flops (example & realization)

C T Choi

How do you represent number digitally?

10V in decimal becomes:

- "13" in base 7
- "14" in base 6
- "22" in base 4
- "1010" in Binary (base 2)

- A <u>binary digit</u> (bit) can store 0 or 1 and can be stored in a flip flop
- 4-bit can store number between 0000 to 1111 (16 different numbers)
- N-bit can store 2^N different numbers. (8 bit can store 256, 10 bit → 1024, 15 bit → 32768 (2⁵×1024)...

EECS 42 Spring 2000 Lecture 10

C.T.Choi

29

4-bit flip flops or registers

- 4 bits are transmitted simultaneously, but 4-bit byte is transmitted serially.
- FF5-FF8 are called the storage register or data latch.

Binary transmission

- Suppose we need to transmit 4 bit in binary.
- We can transmit 4 bit **serially** (one bit at a time) or **simultaneously** (four bit together)

30

EECS 42 Spring 2000 Lecture 10

$C\,.\,T.\,C\,\text{hoi}$

Decimal, binary, and hexadecimal number

- Convert from decimal to binary
 Decimal number
 to be
- $245_{10} = 11110101_2$
- Convert from binary to decimal $11110101_2 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4$ $+ 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ = 128 + 64 + 32 + 16 + 0 + 4+ 0 + 1

31

C. T. Choi

C T Choi

Clock

$C\,.\,T.\,C\,hoi$

Analog to Digital (A/D) converters

Example: 16 bit CD system has a quantization error of $0.001526\% \equiv$ Signal/Noise ratio of $= 20*\log(\text{error}) = 96.3 \text{ dB}$

EECS 42 Spring 2000 Lecture 10

C.T.Choi

41

Compact Disc

A/D converters (example)

• Suppose the speed of an 8-bit A/D converter is limited by the counter, which has a maximum speed of 4×10^7 count per second. Estimate the maximum number of A/D conversions per second that can be obtained.

Maximum speed (counter) of 4×10^7 count per second Maximum number of count per signal (worse case) is 2^8 -1=255 count Minimum time per count = $255/(4 \times 10^7) = 6.375$ µsec Maximum number of conversion is the reciprocal of that = 1/6.375 µsec) = 157,000 time per second.

EECS 42 Spring 2000 Lecture 10

Summary

- A register is a set of N FF, which can store N-bit of info.
 4-bit bytes are conveniently represented by hexadecimal digit. A number can be represented by binary, decimal, or hexadecimal form.
- A shift register is a small system that collects bytes of data when the bits are arriving serially.
- Counters are small systems that move thru a cycle of states, moving 1 step for each input.
- Usefully tool for analyzing sequential system are timing diagrams, states tables and state diagrams.
- Analog to digital and digital to analog converters are used as interfaces between analog and digital system.

43

42

C T Choi

WHAT ARE I-V CHARACTERISTICS OF AN ACTUAL HIGH-GAIN DIFFERENTIAL AMPLIFIER ? (optional)

C.T.Choi

OP-AMPS AND COMPARATORS (optional)

A very high-gain differential amplifier can function **either** in extremely linear fashion as a very nonlinear device – a comparator.

