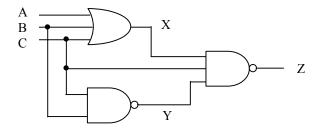
EECS 42 – Introduction to Digital Electronics Fall 2003 Prof. A. R. Neureuther Dept. EECS, 510 Cory 642-4590 UC Berkeley Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Midterm # 2

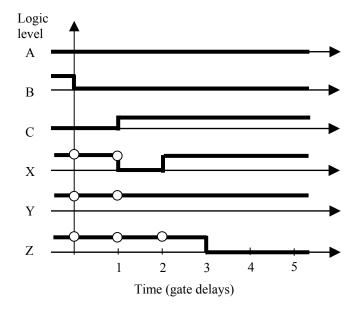
(November 6th, 2003)

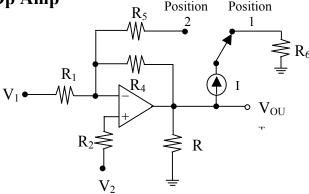

Closed Book, Closed Notes Device Equations on Device Problem Write on the Exam paper

Print Your Name:_	
Sign Your Name:_	

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70% of full credit.

Problem	Possible	Score
I	25	
II	25	
III	28	
IV	22	
Total	100	


I (25 Points) Logic and Timing Diagrams


a) (9 points) Using the inputs in the diagram, determine the initial and final values of X, Y, Z.

Initial 1, 1, 1
$$Y = \overline{BC}$$
Final 1, 1, 0
$$Z = \overline{XCY}$$

b) (16 points) For each of the outputs, circle (with an "o") when new information is received and complete the timing diagram.

II (25 Points) Op Amp

a) (10 points) Find V_{OUT} in terms of V_1 , V_2 , and I, and the resistors R_1 , R_2 , R_3 , R_4 , R_5 , R_6 when the switch is in position 1.

$$\frac{V_2 - V_1}{R_1} + \frac{V_2 - V_{\text{OUT}}}{R_4} = 0$$

$$V_{\text{OUT}} = \frac{-R_4}{R_1} V_1 + \left(\frac{R_4}{R_1} + 1\right) V_2$$

- b) (15 points) Assume the switch is now in position 2.
 - 1. Give an equation that could be solved to find the new V_{OUT} .

$$\frac{V_2 - V_1}{R_1} + \frac{V_2 - V_{\text{OUT}}}{R_4} - I = 0$$

2. Specify those and only those sources and resistances that will appear in the answer.

$$V_1, V_2, I$$
 R_1 R_4

Note: R_5 does not appear because R_5 does not affect the current.

3. State if the proportionality between V_{OUT} and V_1 will change or not. Briefly explain your answer.

No, the current just shifts the output by $I R_4$.

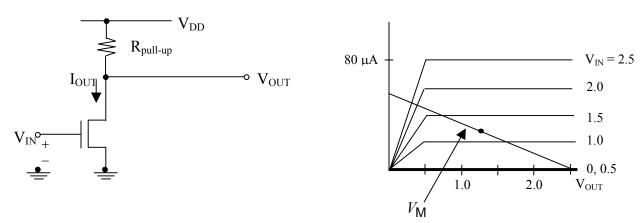
III (28 Points) Dependent Source Analysis

a) (10 points) Find one equation between V_{IN} and V_{OUT} with no other voltages.

$$\begin{split} \frac{V_a - V_1}{R_1} + \frac{V_a}{R_2} + \frac{V_a - V_b}{R_3} &= 0 \\ \frac{V_b = V_{\text{OUT}}}{V_a = -\frac{V_{\text{OUT}}}{A}} \\ \frac{-V_{\text{OUT}}}{AR_1} - \frac{V_1}{R_1} - \frac{V_{\text{OUT}}}{AR_2} - \frac{V_{\text{OUT}}}{AR_3} - \frac{V_{\text{OUT}}}{R_3} &= 0 \end{split}$$

b) (12 points) Find the equivalent resistance looking to the right of the AA' cut-line.

$$\begin{aligned} & \text{Apply } V_{\text{TEST}} & \quad \text{Test} = \frac{V_{\text{TEST}}}{R_2} + \frac{V_{\text{TEST}} + AV_{\text{TEST}}}{R_3} \\ & \frac{V_{\text{TEST}}}{i_{\text{TEST}}} = \frac{1}{\frac{1}{R_2} + \frac{1+A}{R_3}} = R_2 \left\| \frac{R_3}{1+A} \right\| \end{aligned}$$


c) (6 points) If A is large and if R_1 and R_2 are similar, will the equivalent resistance found in part b) be much larger, the same, or much smaller than R_1 and R_2 by themselves? Give an intuitive explanation.

Will be much smaller.

Since V_b is negative and proportional to V_a , the current in R_3 is multiplied by (1 + A), making R_3 smaller by (1 + A).

IV (22 Points) Logic Circuit with an EE42 Device

Use the I versus V curves shown to the right and assume $V_{DD} = 2.5V$.

a) (10 points) Choose a pull-up resistance that will make $V_{OUT} = V_{IN} = V_{MID} = 1.25V$.

Graphical solution.
$$\frac{80(1.25 - 0.5)}{2.5 - 0.5} = 30 \mu A$$

$$\frac{\Delta V}{\Delta t} = \frac{2.5 - 1.25}{30 \,\mu\text{A}} = 42k\Omega$$

b) (12 points) Assuming, (W/L) =4, find V_{Tn} , $V_{SAT_SAT_n}$, and k' for this NMOS device graph?

From spacing: $V_{T_n} = 0.5V$

From saturation point : $V_{SAT_SAT_n} = 0.5V$

$$80 = k_n'(4)(2.5 - 0.5)(0.5)$$

$$k_n' = \frac{20\mu A}{V^2}$$