EECS 42 - Introduction to Digital Electronics Fall 2003, Dept. EECS,
 Prof. A. R. Neureuther 510 Cory 642-4590

 UC BerkeleyOffice Hours During Finals Listed Below Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Topical Coverage Final Exam

8-11 AM Friday, December 12 room TBA

Closed Book - Device Equations Provided
Bring Calculator, Paper provided
Review Session (3:30-5 PM), Wednesday, December $10^{\text {th }}, 289$
Cory Review Session (3:30-5 PM), Thursday, December $11^{\text {th }}, 289$
Cory
Office Hours: $8^{\text {th }} \mathbf{1 1}$ IS, $9^{\text {th }} 11$ EC \& 3:30 EC, $10^{\text {th }} 11$ IS, 11 th 11 AN
Schwarz and Oldham Material followed by skills
Chapter 2: all except 2.4 Loop Analysis, 2.6 and 2.7, light on 2.5
Node analysis of circuits with up to 8 branches, Voltage and current dividers
Chapter 3: all
Equivalent circuits: Thevenin and Norton; Nonlinear loads and load lines
Chapter 4: all but only ideal op-amps
Dependent sources, gain, input and out put impedance; Ideal Op-Amps; Comparators (L15).
Chapter 5: all light on 5.3 and very limited inductor circuits.
Chapter 8.1: Only 8.1 EE 40/42 solution method; KCL to get differential equation; pulses
Chapter 10: no flip-flops Gates and logic functions; Timing diagrams (L12)
Lectures 16-17, O\&S pp. 522-524, 604-611 Static Logic with state dependent devices
Device I vs. V curves and load line method; Static Power; Simple inverter and voltage transfer function; Complementary Pull-Up and Pull-Down (CMOS)
Lectures 18-22 O\&S pp. 604-618 and viewgraphs: Dynamic Logic
Dynamic (Transient) Switched Resistor Model and 0.69RC delay;
Worst case propagation delay, Cascade propagation delay
Use of Latches and designing clock delay
Lectures 23-24, O\&S pp. 481-499, 511-527, 594-598, Device physics and models
Diode equation, perfect rectifier and large signal models and use in circuits.
Carrier motion as basis for conductance and conductance-resistance of MOS

Likely Exam Emphasis

Transient

Logic Functions and Timing Diagrams
Dependent Sources, Gain, Thevenin resistance
Ideal Op-Amps,
Load Lines and Static analysis of logic gates using I vs. V model
CMOS Logic Functions, Delay, Latches
Diode circuit analysis and signal processing, Gate controlled resistance

$$
\begin{aligned}
& \text { EE } 42 \text { Device } \\
& I_{\text {OUT-SAT-D }}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D} \\
& I_{O U T-S A T-U}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U}{ }_{\text {When in circuit attached to } \mathrm{V}_{\mathrm{DD}} .} \\
& \sigma=q N \mu \quad R=\frac{L}{\sigma \cdot h \cdot w}=\left(\frac{1}{\sigma \cdot h}\right)\left(\frac{L}{W}\right)=R_{\text {SHEET }}\left(\frac{L}{W}\right) \\
& k_{D}=\mu_{n} C_{O X}\left(\frac{W}{L}\right)_{n} \quad \mu_{n}=500\left(\mathrm{~cm}^{2} / V s\right) \quad \mu_{p}=150\left(\mathrm{~cm}^{2} / V s\right) \\
& C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)(3.9)}{6 \times 10^{-7} \mathrm{~cm}}=5.75 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}
\end{aligned}
$$

