EECS 42 - Introduction to Electronics for Computer Science

Fall 2003,
Prof. A. R. Neureuther Dept. EECS,
UC Berkeley 510 Cory 642-4590
OH M 1, Tu-Th 10:30=11:30, F 11
Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/
Midterm Thursday November 6th
In class, Closed Book, Closed Notes, Device Equations Provided
Review Session \#1: 5 PM Tuesday Nov $4^{\text {th }}$, meet at 241 Cory
Review Session \#2: 6 PM Wednesday Nov 5th, meet at 241 Cory

Topical Coverage Second Midterm

Schwarz and Oldham Material followed by skills
Chapter 2: all except 2.4 Loop Analysis, 2.6 and 2.7, light on 2.5
Node analysis of circuits with up to 8 branches
Voltage and current dividers

Chapter 3: all

Equivalent circuits: Thevenin and Norton
Nonlinear loads and load lines
Chapter 4: all but only ideal op-amps
Dependent sources, gain, input and out put impedance
Ideal Op-Amps
Generalization to Comparators
Chapter 5: all light on 5.3 and no inductor circuits.
Chapter 8.1: Only 8.1
EE 40/42 simple solution method and application to switching and pulses
KCL to get differential equation for capacitor voltage and inductor current
Chapter 10: no flip-flops
Gates and logic functions
Generalization: Timing diagrams
Lectures 15-18, pp. 522-524, 604-611 Logic with state dependent devices
Device I vs. V curves and load line method
Simple inverter and voltage transfer characteristic
Complementary Pull-Up and Pull-Down networks (CMOS)

Likely Exam Emphasis

Analysis of vanilla circuits with dependent sources

Ideal Op-Amps

Analysis of circuits using dependent sources to improve characteristics
Logic Functions and Timing Diagrams
Static but no dynamic analysis of logic gates

$$
\begin{aligned}
& I_{O U T-S A T-n}=k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{I N}-V_{T n}\right) V_{O U T-S A T-n} \\
& I_{O U T-S A T-p}=k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-V_{I N}-\left|V_{T p}\right|\right) V_{O U T-S A T-p}
\end{aligned}
$$

	$\mathrm{V}_{\mathrm{T}}(\mathrm{V})$	$\mathrm{V}_{\text {OUT-SAT }}(\mathrm{V})$	$\mathrm{k}^{\prime}\left(\mu \mathrm{A} / \mathrm{V}^{2}\right)$
NMOS	0.43	0.63	100
PMOS	0.4	1	25

For a minimum sized device $\mathrm{W} / \mathrm{L}=2$

