Solutions to Practice Problems

1, $I_{x}=(\operatorname{Im} A)\left(\frac{2 k}{2 t+4 k}\right)$, current divider

$$
\begin{aligned}
& =1 / 3 \mathrm{~mA} \\
A I_{X} & =(6000)\left(\frac{1}{3} \mathrm{~mA}\right)=2 \mathrm{~V} \\
P_{\text {Load }} & =V^{2} / R_{L}=\frac{(2)^{2}}{5 \mathrm{~K}}=0.8 \mathrm{~mW}
\end{aligned}
$$

2, using superposition :

- Volt $=-\frac{R_{2}}{R_{1}}\left(V_{1}\right), V_{2}$ turns off
- $V_{\text {out }}=\left(1+\frac{R_{2}}{R_{1}}\right)(\underbrace{\left.\frac{R 4}{R 4+R_{3}}\right)\left(v_{2}\right)}_{\text {voltage divider to obtain } v^{+}}$,

$$
V_{\text {out }}=-\frac{R_{2}}{R_{1}} V_{1}+\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{4}+R_{3}}\right)\left(v_{2}\right)
$$

3 ,

$$
\begin{aligned}
& \text { Vout }_{A}=-\frac{R_{2}}{R_{1}}\left(V_{A}\right)\left(1+\frac{R_{4}}{R_{3}}\right) \\
& \text { Rout }_{B}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(1+\frac{R_{4}}{R_{3}}\right)\left(V_{B}\right) \\
& V_{\text {ont }}=\left(1+\frac{R_{4}}{R_{3}}\right)\left(-\frac{R_{2}}{R_{1}} V_{A}+\left(1+\frac{R_{2}}{R_{1}}\right)\left(V_{B}\right)\right)
\end{aligned}
$$

4, $v_{x}=(5 v)\left(\frac{6 k / 16 k}{6 k / 16 k+2 k}\right)$, voltage divider

$$
=3 \mathrm{~V}
$$

Thevenin eq.

4 (cont.)

5,

$$
\begin{aligned}
& V_{O C}=12 \mathrm{~V} \\
& I_{S C}=12 \mathrm{~V} / 2,4 \mathrm{C}=5 \mathrm{~mA}
\end{aligned}
$$

I~5 mA (a little less than $\sin A$)

$$
v=0,7 v
$$

$6 a$,

$$
\begin{aligned}
I= & \frac{10+10-0,7}{1 k+5 t}=3.2 \mathrm{~mA} \\
\text { Vont } & =I(5 k)-10 \mathrm{~V} \\
& =6 \mathrm{~V}
\end{aligned}
$$

b, $D_{1} \not \& D_{2}$ on, Naut $=-0.7 \mathrm{~V}$ to check:

$7 a$,

$$
\begin{aligned}
& D_{1} \stackrel{\text { on }}{\boldsymbol{\Sigma}}, D_{2} \text { on } \\
& V_{\text {out }}=+0.7 \mathrm{~V}
\end{aligned}
$$

b) D_{1} on, D_{2} off.

$$
\begin{aligned}
\text { Vart } & =I R_{2}-10 \mathrm{~V}, \quad I=\frac{10+10-0.7}{17 k+2.3 k}=1 \mathrm{~mA} \\
& =(1 \mathrm{~mA})(2.3 \mathrm{k})-10 \mathrm{~V}=-7.7 \mathrm{~V}
\end{aligned}
$$

8, D_{1} on, D_{2} off.

$$
\begin{aligned}
& P_{01}=\left(V_{01}\right)\left(I_{01}\right)=(0.7 V)(10 \mathrm{~mA})=7 \mathrm{~m} \mathrm{\omega} \\
& P_{O 2}=\left(V_{02}\right)\left(I_{02}\right)=\left(V_{D_{2}}\right)(0)=0
\end{aligned}
$$

9, D_{2} on, D_{1} off

$$
\begin{aligned}
& P_{D_{2}}=7 \mathrm{~mm} \\
& P_{01}=0
\end{aligned}
$$

10,

$$
v_{\text {ont }}=-\left(\frac{R_{F_{2}}}{R_{2}}\right)\left(1+\frac{R_{1}}{R_{1}}\right) r_{S}
$$

