EECS 42 - Introduction to Electronics for Computer Science

Fall 2001, Dept. EECS, UC Berkeley

Prof. A. R. Neureuther
510 Cory 642-4590
Tentative OH M, Tu, W, (Th), F 11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Quiz \#1 September 26, 2001

Show your work so that the method can be graded for correctness and completeness and all of the points do not depend on just the final numerical value.

I (20 Points) Basic Circuit Analysis
a) For the circuit shown find V_{b}.

No current in the output. I_{2} goes through R_{1}. $\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{1}+\mathrm{I}_{2} \mathrm{R}_{1}=2 \mathrm{~V}+(1 \mathrm{~mA})(1 \mathrm{k} \Omega)$ $=2 \mathrm{~V}+1 \mathrm{~V}=3 \mathrm{~V}$
b) Find the Thevenin resistance seen looking into the output terminals.
Turn V1 to zero $=$ short; Turn I_{2} to zero $=$ open See R2 in series with R1
$\mathrm{R}_{\text {THEVENIN }}=\mathrm{R}_{1}+\mathrm{R}_{2}=3 \mathrm{k} \Omega$
II (20 Points) Transient Analysis
The switch in the circuit to the right is opened at $t=0$. Find and equation that describes $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{A}+\mathrm{Be}^{-\mathrm{t} / \tau} \\
& \begin{aligned}
\mathrm{V}_{\mathrm{C}}(0) & =\mathrm{Voltage} \text { Divider }=\mathrm{V}_{\mathrm{S}}\left(\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right) \\
& =6(2 \mathrm{k} \Omega /(4 \mathrm{k} \Omega+2 \mathrm{k} \Omega))=2 \mathrm{~V}=\mathrm{A}+\mathrm{B} \\
\mathrm{~V}_{\mathrm{C}}(\text { infinity }) & =\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}=\mathrm{A}
\end{aligned}
\end{aligned}
$$

Time constant $\tau=\mathrm{R}_{1} \mathrm{C}=4 \mathrm{k} \Omega 1 \mathrm{pF}=4 \mathrm{~ns}$

$$
V_{C}(t)=6 V-4 e^{-t / 4 n s}
$$

