EECS 42 - Introduction to Electronics for Computer Science

Fall 2001, Dept. EECS,

Prof. A. R. Neureuther
510 Cory 642-4590 UC Berkeley

Tentative OH M, Tu, W, (Th), F 11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee42/

Midterm \#1 October 3rd, 2001

Closed Book, Closed Notes Write on the Exam paper

Print Your Name:
 \qquad Solutions

\qquad Sign Your Name: \qquad

Show your work so that the method as well as the answer can be graded for correctness and completeness. Correct answers alone are only worth 70% of full credit.

Problem	Possible	Score
I	20	
II	20	
III	20	
IV	20	
V	20	
Total	100	

I (20 Points) Basic Circuit Analysis

$$
\begin{aligned}
& V_{1}=1 V \quad V_{2}=2 V \quad V_{5}=-3 V \\
& I_{1}=1 \mathrm{~mA} \quad I_{4}=2 \mathrm{~mA}
\end{aligned}
$$

a) For the circuit shown find V_{4}.

$$
\begin{aligned}
& \text { Use KVL around outside of circuit. } \\
& -V 1+V 2+V 4+V 5=0 \\
& -1 V+2 V+V 4-3 V=0 \\
& V 4=2 V
\end{aligned}
$$

b) For the circuit shown find I_{3}.

$$
\begin{aligned}
& \text { KCL at top left node } I 2=-I 1 \\
& \text { KCL at top right node } \quad \mathrm{I} 2-\mathrm{I} 3-\mathrm{I} 4=0 \\
& -1 \mathrm{~mA}-\mathrm{I} 3-2 \mathrm{~mA}=0 \\
& \mathrm{I} 3=-3 \mathrm{~mA}
\end{aligned}
$$

c) For the circuit shown find the power into E_{2}.

$$
\begin{aligned}
& \mathrm{PAB}=(\mathrm{IAB})(\mathrm{VAB})=(\mathrm{I} 2)(\mathrm{V} 2) \\
& =(-1 \mathrm{~mA})(2 \mathrm{~V})=-2 \mathrm{~mW}
\end{aligned}
$$

a) For the circuit shown find the Thevinin equivalent circuit looking into the output.

> Vb is fixed by V2
> R3 and $R 2$ divide this voltage
> VOC $=V 2(R 3) /(R 2+R 3)$
> $=5 V(3 k) /(2 k+3 k)=3 V$

Find REQ by turning sources to zero
Current source $=$ open; voltage source $=$ short
Looking into the output see R3 in parallel with R2 due to short of V 2 .
REQ $=(2 k \times 3 k) /(2 k+3 k)=1.2 k$ Ohms
b) For the circuit shown find the current through the voltage source (I_{Sv}) when the output is shorted.

When the output is shorted $\mathbf{R} 2$ has V2 across it.
IOUT $=$ V2 $/$ R2 $=5 \mathrm{~V} / 2 \mathrm{k}=2.5 \mathrm{~mA}$
I1 forces 3 mA through R1.
KCL at $\mathrm{Vb}=>\mathbf{3 m A}-\mathrm{ISV}-2.5 \mathrm{~mA}=0$
$\mathrm{ISV}=0.5 \mathrm{~mA}$

III (20 Points) Equivalent Circuits and Analysis

A linear circuit is connected to a nonlinear load. Before it is connected the circuit is tested and has an open circuit voltage of 15 volts and a short circuit current of 10 mA .
a) Using one of the following load lines correctly determine the voltage and current through the nonlinear load when the circuit is connected to the nonlinear load.

b) Find the power out of the source in the Thevinin equivalent circuit and the fraction of its power that is delivered to the nonlinear load.

$$
\begin{aligned}
& \mathrm{VT}=\mathrm{VOC}=15 \mathrm{~V} \\
& \mathrm{INL}=5 \mathrm{~mA} \\
& \mathrm{PT}=(\mathrm{VT})(\mathrm{INL})=(15 \mathrm{~V})(4.8 \mathrm{~mA})=72 \mathrm{~mW} \\
& \mathrm{PNL}=(\mathrm{VNL})(\mathrm{INL})=(7.7 \mathrm{~V})(4.8 \mathrm{~mA})=37 \mathrm{~mW} \\
& \text { Fraction }=(37 \mathrm{~mW}) /(72 \mathrm{~mW})=0.51
\end{aligned}
$$

IV (20 Points) Transient

The switch in the circuit moves
from A to B at $\mathrm{t}=0$. Find the output voltage $\mathrm{V}_{\text {OUT }}(\mathrm{t})$.

NOTE ‘OUT’!

One approach is to first find $\mathrm{VC}(\mathrm{t})$ and then note that R 3 and R 2 form a voltage divider that scales VC(t) to form VOUT(t).
(An alternative approach is to just assume that VOUT(t) has the same EE 42 easy method form with the same time constant and find the correct values for VOUT at $\mathbf{t}=\mathbf{0}$ and infinity.)
$\mathbf{V C}(\mathbf{t})=\mathbf{A}+\mathbf{B} \exp (-\mathbf{t} / \mathbf{t a u})$

At $\mathbf{t}=\mathbf{0}, \mathrm{VC}=\mathbf{5 V}[=>\mathrm{A}+\mathrm{B}=\mathbf{5 V}]$
R2 and R3 appear in series to the capacitor after the switch is in position B.

Tau $=(\mathrm{R} 2+\mathrm{R} 3) \mathrm{C}=(\mathbf{2 k}+\mathbf{5 k}) \mathbf{1 p F}=\mathbf{5 n s}$
$V C$ at $t=$ infinity is 0 (discharges completely) $[=>A=0]$
Combining
$\mathrm{VC}(\mathrm{t})=0+5 \exp (-\mathrm{t} /(5 \mathrm{~ns}))$

```
Applying divider
VOUT(t) = [(3k)/(2k + 3k)] 5 exp (-t/(5ns))
VOUT(t) = 3 exp (-t/(5ns))
```

V (20 Points) Node Equations

Label the nodes and write a complete set of node equations for determining the node voltages that only contain the node voltages themselves and resistance, capacitance, V_{S} and $\mathrm{I}_{\text {Load }}$.
E = ground

Plan what you are going to do because you can save yourself a lot of writing. The equations should hold for both time varying as well as steady state node voltages.

Nodes are lettered A to E.
There are 5 nodes so normally 4 equations are required.
However, there are two special situations.

1) If $R 3$ and $R 4$ are combined in series node C is not needed.
2) A supernode surface can be placed around VS to merge A and

Thus KCL is $\begin{aligned} & \frac{V_{A}}{R_{1}}+\frac{\left(V_{A}+V_{S}\right)}{R_{2}}+\frac{\left(V_{A}+V_{S}-V_{D}\right)}{R_{3}+R_{4}}=0 .\end{aligned}$

$$
-\frac{\left(V_{A}+V_{S}-V_{D}\right)}{R_{3}+R_{4}}+c \frac{\partial V_{D}}{\partial t}+\frac{V_{D}}{R_{5}}+I_{L O A D}=0
$$

These two equations contain only two unknowns VA and VD and only the resistance, capacitance, VS and ILOAD.

If VC is included as a third variable then a third equation is needed.
If the current through VS (IVS) is included then a fourth equation is needed and must be solved to eliminate IVS as it is not an allowed parameter in the final expression.

