EE40 Lecture 7 Josh Hug

7/7/2010

Blackboard Stuff

- HW3 concerns
- Any general questions people might have

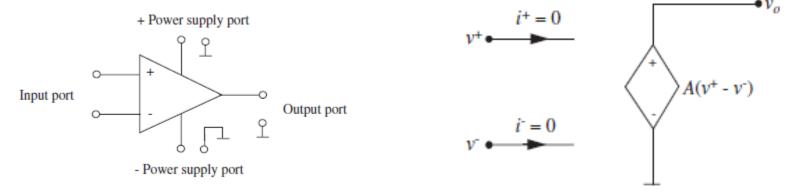
General Info

- No lab today
- Midterm on Friday in class
 - 12:10-1:30 [be on time!]
 - No electronic devices
 - One 8.5"x11" (or A4) sheet of paper
 - Handwritten anything you want, both sides
- HW4 due next Friday (will be posted Friday)
- No positive feedback circuits on the midterm (but there might be on the final)

Project 2

- Project 2 spec to be posted over the weekend
- If you'd like to do something other than the official project, you can submit a specification for your Project 2:
 - Team members (up to 3)
 - Parts list
 - Schematic
- Must have substantial hardware component
 - Microcontrollers are OK, but your project shouldn't be about assembly programming
 - MyDAQ is also OK, but your project shouldn't be about LabVIEW programming
- Custom project proposals due WEDNESDAY by 5 PM

Guest Mini-Lecture Today

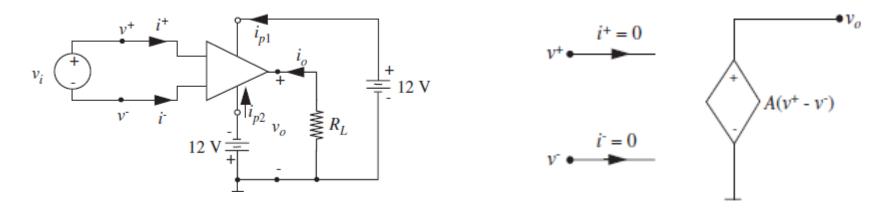

- Jeff Jansen from National Instruments will be talking today for the last half hour
 - MyDAQ data acquisition device
 - USB device that lets you use your computer in lieu of big bulky specialized test equipment
 - Can use this device to do labs from home or anywhere else a laptop functions
 - If anyone wants to use these in labs, we will have 10 of them available
 - Could be handy for Project 2
 - Must have substantial hardware component (can't just be LabVIEW software written for MyDAQ)

Course Website

- I am assured that the rest of the calendar and the other 5 labs will be posted shortly. Most likely schedule is:
 - -7/13: Project 1 (buzzer)
 - 7/14: Sound synthesizer
 - 7/20: Power supply
 - 7/21: Active filter lab
 - 7/27-8/11: Project 2
- Future reading assignments will be posted 3 days before they're due
 - Micro-deadlines are needed for me, too!

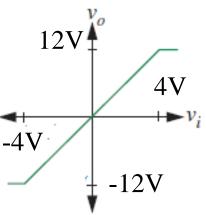
Op-Amp Saturation

 Remember those power ports we've been ignoring?

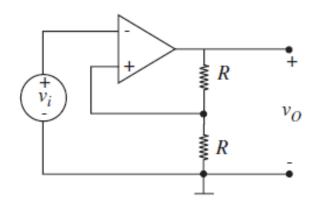

• They specify the maximum and minimum voltage that our op-amp can deliver

$$- \text{ If } v_{\min} < A(v^+ - v^-) < v_{max}$$

• Op-Amp output is $A(v^+ - v^-)$


- $\text{ If } A > v_{max}, \qquad \text{ If } A < v_{min},$
 - Op-Amp output is v_{max}

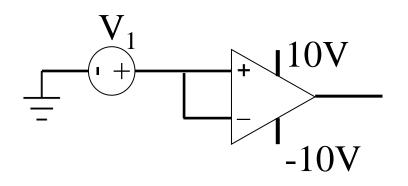
Op-Amp Saturation Example



•
$$v_{max} = 12V$$
, $v_{min} = -12V$

• If A=3: V_{in} V_{o} -5 V -12V -1V -3V 2V 6V 1,512,312V 12V

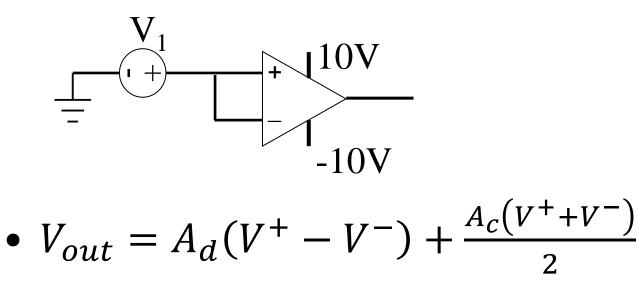
Positive Feedback



On the board

Another Op-Amp Model Revision

- Real amplifiers deviate from the ideal
 Input resistance between V⁺ and V⁻
 - Output resistance at the output of the dependent source
- Another significant problem is "common mode signal amplification"


Common Mode Signal

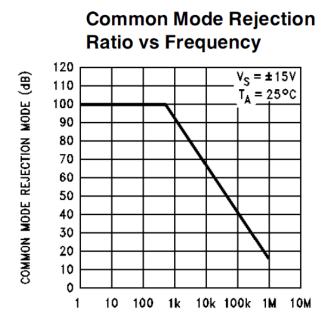
- In theory, the above amplifier would have an output voltage of 0V
- In practice, even an equal signal will leak through a little

•
$$V_{out} = A_d (V^+ - V^-) + \frac{A_c (V^+ + V^-)}{2}$$

New Term

Common Mode Signal

- A_d and A_c are typically not explicitly considered
- Instead, we consider the "Common Mode Rejection Ratio" $CMRR = \frac{A_d}{A_c}$
- Big is good, less common mode signal


Example of using CMRR

• Find V_o as a function of R_s , R_f , CMRR

• (On board)

One of many Op-Amp parameters

- Typical CMRR is 35,000 (~90 dB)
 - Usually measured in db
 - CMRR_{db}=20*log₁₀(CMRR)
- In real life, Op-Amps come with multipage data sheets (as do everything else)

FREQUENCY (Hz)

Hug

- How are you feeling about Node Voltage and solving basic circuits?
 - A. Completely lost
 - B. A little behind
 - C. Alright
 - D. Pretty good
 - E. Feel like I've attained mastery

- How are you feeling about I-V characteristics and Thevenin and Norton equivalents?
 - A. Completely lost
 - B. A little behind
 - C. Alright
 - D. Pretty good
 - E. Feel like I've attained mastery

- How are you feeling about Op-Amp circuits?
 - A. Completely lost
 - B. A little behind
 - C. Alright
 - D. Pretty good
 - E. Feel like I've attained mastery

- How are you feeling about the midterm?
 - A. Terrified
 - B. A little scared
 - C. Neutralish
 - D. Feel prepared
 - E. Feel like I will do excellently

Make up Labs

- Do you need a make up lab?
- A. Yes
- B. No

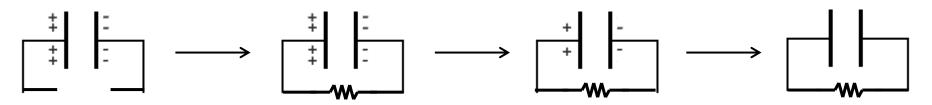
This is where we stopped

Elements with Memory a.k.a. Energy Storage Elements

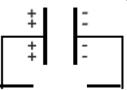
Preview of Unit 2

- In the next major unit of the class, starting next Monday, we'll be discussing elements with memory
 - Capacitor: Gives relationship between I and $\frac{dv}{dt}$
 - Inductor: Gives relationship between V and $\frac{di}{dt}$
- Fundamental mathematical difference is that their *IV* relationship changes with time
- Fundamental physical difference is that they can store energy
- For the rest of today, we'll give a sneak preview of this material

RC Circuits


 Taking the Live Demo risk, let's check out a quick qualitative circuit simulation

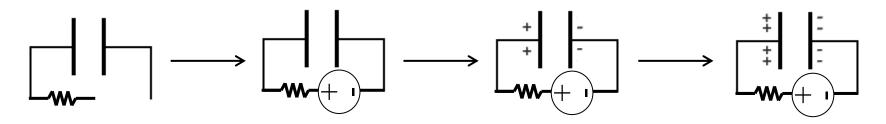
- The basic idea is pretty simple
 - Imagine you have two parallel metal plates, both of which have equal and opposite excess charges
 - Plates are separated by an insulating layer (air, glass, wood, etc)


- The charges would love to balance out
- Insulator blocks them (just as the ground blocks you from falling into the center of the earth)

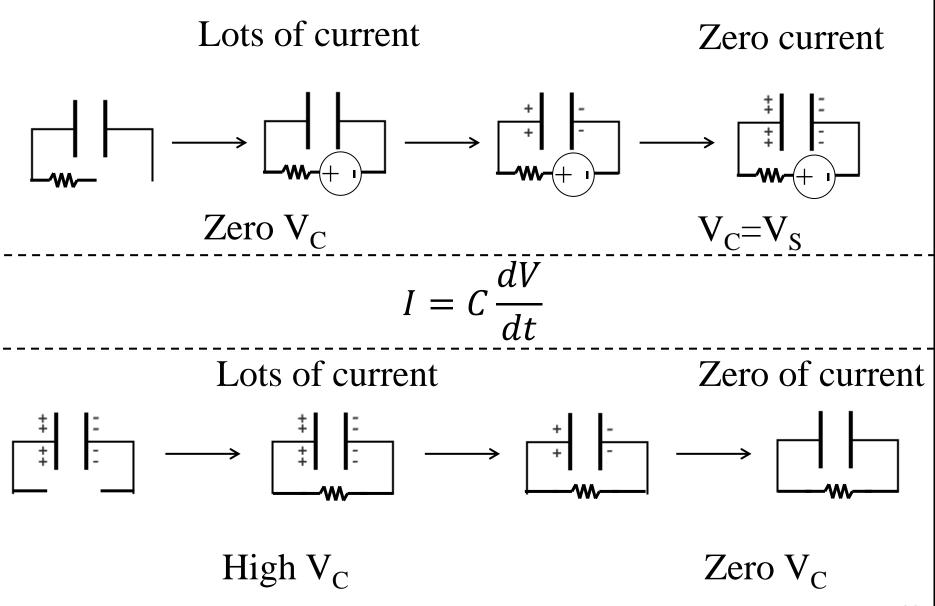
The Capacitor

- If you were to connect a resistive wire to the plates
 - Charges would flow through the wire
 - Charge flow is current
 - $P = I^2 R$
 - Energy has been released as heat

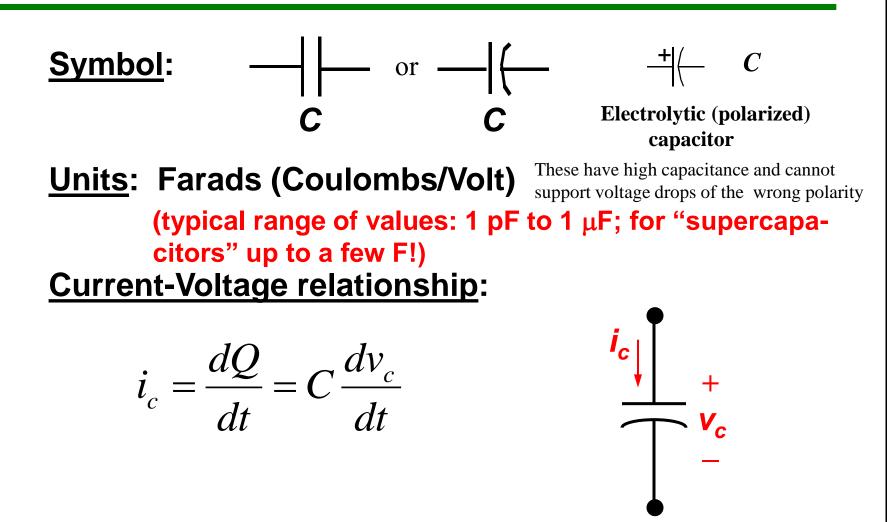
 Remember that a voltage is the electrical potential between two points in space



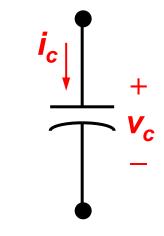
- Here, we have an imbalance of charge, and thus an electric field, and thus a voltage V = EL
 - Field strength is dependent on number and distribution of charges as well as material properties
 - Field length is dependent on size of capacitor
 - Capacitor size and material properties lumped into single "capacitance" C


•
$$V = QC$$

The Capacitor


- Thus, if you connect a voltage source to the plates
 - Like charges will move to get away from the source
 - Charge flow is current
 - Current will stop once charges reach equilibrium with voltage source, i.e. $V_c = V_s$
 - Energy has been stored

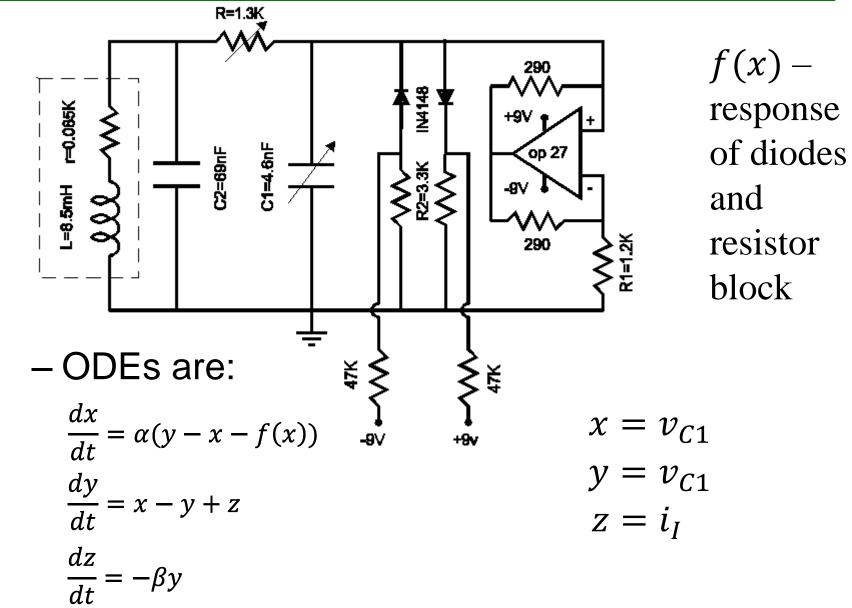
The Capacitor


Capacitor

<u>Note</u>: v_c must be a continuous function of time since the charge stored on each plate cannot change suddenly

Node Voltage with Capacitors

 $i_c = \frac{dQ}{dt} = C \frac{dv_c}{dt}$



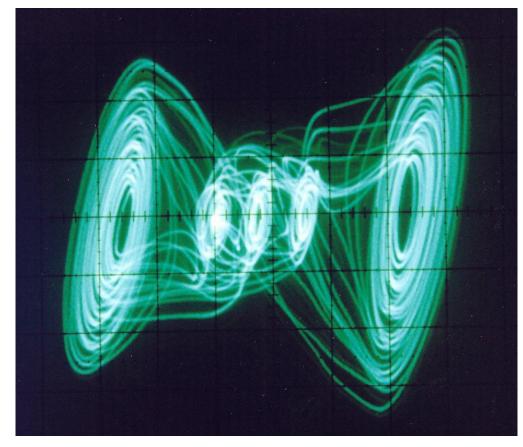
On board

Ordinary Differential Equations

- Inductors, too, give us a simple 1st order relationship between voltage and current
- Node Voltage with memoryless circuits gave us algebraic equations
- Node voltage with elements with memory will give us Ordinary Differential Equations (ODEs)
- Next week will be a bunch of setting up and solving 1st and 2nd order linear ODEs
- Higher order and especially nonlinear ODEs are tough to solve. For example...

Chua's Circuit

EE40 Summer 2010


Chua's Circuit

• Despite simplicity of ODEs

$$\frac{dx}{dt} = \alpha(y - x - f(x))$$
$$\frac{dy}{dt} = x - y + z$$
$$\frac{dz}{dt} = -\beta y$$

• Exhibits chaos!

Invented by current UC Berkeley EECS professor Leon Chua in 1983

Capacitors

- Useful for
 - Storing Energy
 - Filtering
 - Modeling unwanted capacitive effects, particularly delay

Good luck on your midterm!

• Now on to Jeff's presentation