Electrical Quantities, Circuit Elements, KCL

EE40, Summer 2004 Alessandro Pinto apinto@eecs.berkeley.edu

- \checkmark New schedule has been posted on-line
- ✓ Office hours moved in 463 Cory Hall
- \checkmark <u>No discussions no labs this week!</u>
- ✓ Would you **move lectures** in 247 Cory Hall?
- ✓ HW will be posted on Friday and will be due by 5PM in 463 Cory Hall the following friday

About Labs

010	10	010	18
012	3		
013	27	 013	19
014	3	015	19
015	13		

Missing e-mail addresses

name [BAN, IL HYUN]

name [BAZARRAGCHAA, ZORIGT]

name [BESTORY, CORINNE]

name [BROWNING, JASON]

name [CHUNG, HYE WON]

name [JANG, WEON WI]

name [JWA, TAI WOOK]

name [KIM, JU HYUN]

name [KIM, KI SANG]

name [LEEPER, ANDREW ALAN]

name [LIM, SANG HO]

name [NORONA, CHARLES EDWARD]

name [RYU, SEONG WAN]

neilg@uclink.berkeley.edu

psyrex@uclink4.berkeley.edu

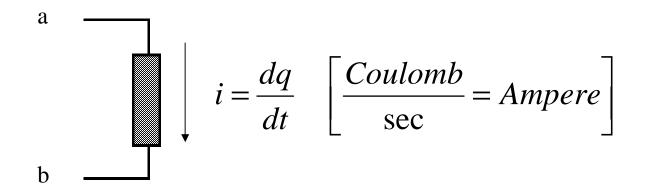
Outline

- \checkmark Basic quantities
 - ✓ Charge
 - ✓ Current
 - ✓ Voltage
 - ✓ Power
- ✓ Basic elements
 - ✓ Resistor
 - ✓ Voltage Source
 - ✓ Current Source
 - ✓ Capacitor
 - ✓ Inductor
- ✓ Kirchoff's Current Law

Charge

- ✓ Charge are quantized
 ✓ Multiple of 1.602 · 10⁻¹⁹ Coulomb
- ✓ Charge conservation principle
 ✓ Electric charge is neither created nor destroyed
- ✓ Rubbing amber and fur separates charges but the system is still neutral

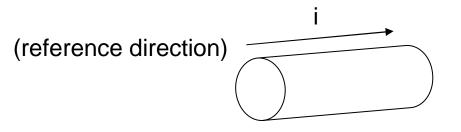
Voltage


✓ Work done per unit charge to move against an electric field

 $v = \frac{dw}{dq}$ v_{ab} $v_{ab} = v_a - v_b$

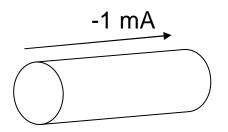
- ✓ Remember that voltage is defined with respect to a reference point
- ✓ Unit of measure Volt (V) = Joule/Coulomb (in honor of Alessandro Volta)

Current

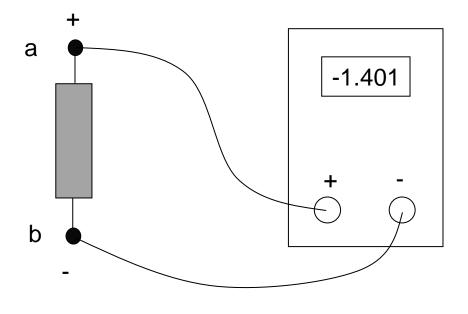

✓ Rate of flow of electric charge

✓ Unit of measure Ampere (A) (in honor of André-Marie Ampère)

 \checkmark Current has polarity and direction


Reference direction

 \checkmark Count charges flowing in the conductor


- ✓Positive charges flowing in the reference direction contribute as positive
- ✓ Positive charges flowing against the reference direction contribute as negative
- ✓ Negative charges flowing in the reference direction contribute as negative
- ✓Negative charges......

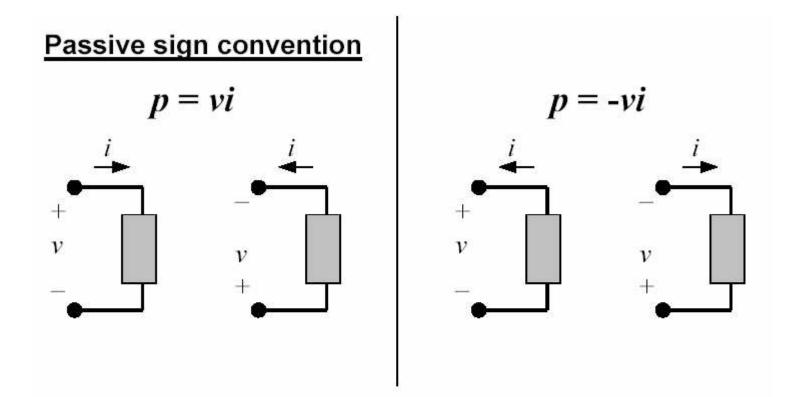
Reference direction

✓ It means that there is a flow of 1 mC of positive charges per second against the reference direction

Reference Polarities

$$v_{ab} = v_a - v_b = -1.401$$

 $v_{ba} = v_b - v_a = 1.401$

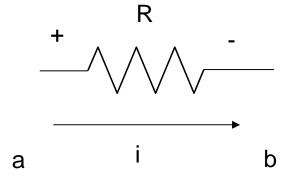

Power

✓ Change in energy over time

$$p = \frac{dw}{dt} = \frac{dw}{dq}\frac{dq}{dt} = vi \quad [Volt \cdot Ampere = Watt]$$

- ✓ A charge q moving through a drop in voltage V loses energy qV
- ✓ Rate of energy loss depends on number of charges per second, which is current

Sign Convention for Power


- If p > 0, power is being delivered to the box.
- If p < 0, power is being extracted from the box.

Resistor

Resistance is the capacity of a material to impede the flow of electric charge. The circuit element used to model this behavior is the <u>resistor</u>.

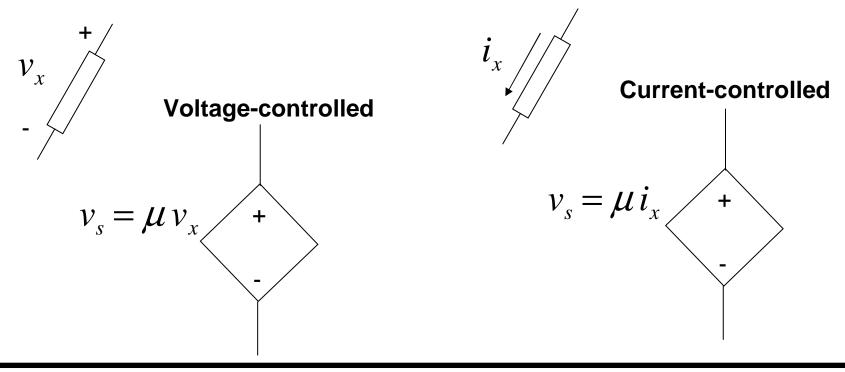
With the reference direction and polarities shown we get the Ohm's law

$$v_{ab} = Ri \ [V = \Omega \ A]$$

A resistor always absorb power, R is always positive

Voltage Sources

\checkmark Independent ideal voltage source


- Circuit element that maintains a prescribed voltage across its terminals, regardless of the current flowing in those terminals.
- ✓Voltage is known, but current is determined by the circuit to which the source is connected.

$$\mathcal{V}_{s}$$

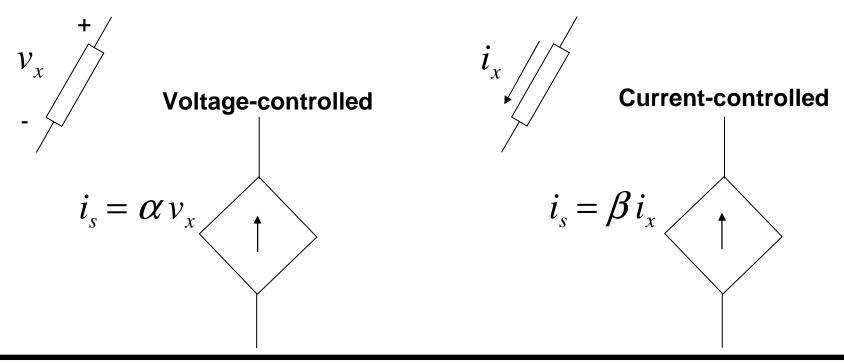
Voltage Sources

\checkmark Dependent ideal voltage source

 ✓ It is a voltage source whose voltage depends on a voltage or current elsewhere in the circuit

Current Sources

\checkmark Independent ideal current source


- Circuit element that maintains a prescribed current through its terminals, regardless of the voltage across those terminals.
- ✓ Current is known, but voltage is determined by the circuit to which the source is connected.

$$i_s$$

Current Sources

\checkmark Dependent ideal current source

 ✓ It is a current source whose current depends on a voltage or current elsewhere in the circuit

Circuit Nodes and Loop

✓ A node is a point where two or more circuit elements are connected

✓ A loop is a path of circuit elements that starts and ends at the same node and includes other nodes at most once

Kirchoff's Current Law

- ✓ The algebraic sum of all the currents at any node in a circuit equals zero.
- ✓ The sum of all currents entering a node is equal to the sum of all currents leaving a node

