

Homework #6

Problem 1:

$$A = V_{DD}, B = 0$$
: $V_{OUT} = V_{DD}$

Using sum-of-products, V_{OUT} = A $\overline{\mbox{ B}}$.

$$A = V_{DD}, B = V_{DD}$$
: $V_{OUT} = 0$

Problem 2:

NMOS₂ is cutoff.

For NMOS₁, $V_{GS(N1)} = V_{TH(N)} + \epsilon$. NMOS₁ is therefore barely turned on, so I_D is small.

 $PMOS_1$ and $PMOS_2$ have the same small current as $NMOS_1$ since no current goes through cutoff $NMOS_2$.

PMOS₁ has $V_{GS(P1)} = V_{TH(N)} + \varepsilon - V_{DD}$. By assumption stated in this problem, PMOS₁ is fully turned on.

Small I_D through a fully turned on transistor indicated **PMOS**₁ is in triode mode.

This also indicates that $V_{DS(P1)}$ for PMOS₁ will be small. So the source terminal of PMOS₂ is close to V_{DD} potential.

Therefore, $PMOS_2$ is fully turned on, and by the same argument, **PMOS_2** is in triode mode.

Thus PMOS₂ will also have a small $V_{DS(P2)}$. This indicates $V_{DS(N1)}$ for NMOS₁ is close to V_{DD} , since $V_{DS(N1)}$, $V_{DS(P1)}$ (small), and $V_{DS(P2)}$ (small) must sum to V_{DD} . So **NMOS₁ is in saturation mode.**

Problem 3:

a) The shortest pull-down delay will occur when the NMOS resistances combine to form the smallest possible resistance. This will occur when all three NMOS transistors are active, so the resistances combine in parallel. To activate all three transistors, set $A = B = C = V_{DD}$. The previous input should make the output high so we can pull it down; previous input should be A = B = C = 0.

b) The longest pull down time occurs when the NMOS equivalent resistance is largest; when only one NMOS is on. This occurs when only one input is high, e. g. $A = V_{DD}$, B = C = 0, with previous inputs as in a).

 $R_{EQ} = R_N = 10 \text{ k}\Omega$ $t_p = 0.69 \text{ } R_{EQ} \text{ } C_{OUT} = 345 \text{ ps}$

c) and d) There is only one way to pull up the output: set A = B = C = 0. Any other previous input will result in pull up with new input A = B = C = 0.

 R_{EQ} = 3 R_P = 30 kΩ t_p = 0.69 R_{EQ} C_{OUT} = 1035 ps

Problem 4:

$$\begin{split} V_{DD} &= 5 \ V \\ V_{TH(N)} &= -V_{TH(P)} = 1 \ V \\ C_{OX} &= 5 \ fF/\mu m^2 \ for \ both \ transistors \\ L &= 1 \ \mu m \ for \ both \ transistors \\ W &= 2 \ \mu m \ for \ both \ transistors \\ \lambda &= 0 \ for \ both \ transistors \\ \mu_N &= 50000 \ mm^2 \ / \ (V \ s) \\ \mu_P &= 25000 \ mm^2 \ / \ (V \ s) \end{split}$$

a) When the previous input to the inverter is 0, and the new input is V_{DD}, then the output voltage will be pulled down. The NMOS transistor is active when the new input is V_{DD}, so it conducts the current discharging the capacitor.

 $t_{p} = 0.69 R_{N} C_{OUT}$

 $R_N = \frac{3}{4} V_{DD} / I_{DSAT(N)}$

$$I_{\text{DSAT(N)}} = \frac{1}{2} \text{ W/L } \mu_{\text{N}} \text{ C}_{\text{OX}} (\text{V}_{\text{GS(N)}} - \text{V}_{\text{TH(N)}})^2 = \frac{1}{2} (2\mu \text{m} / 1 \ \mu\text{m}) (50000 \ \text{mm}^2/\text{Vs}) (5 \ \text{fF}/\mu\text{m}^2) (5 \ \text{V} - 1 \ \text{V})^2 = 4 \ \text{mA}$$

 $R_N = 937.5 \ \Omega$

There are 4 transistors per NAND or NOR gate. With one NAND and one NOR attached to the output, 8 transistors are attached to the inverter output. Thus, 8 C_G capacitances are contributed.

 $C_G = W L C_{OX} = (2 \ \mu A)(1 \ \mu A)(5 \ fF/\mu m) = 10 \ fF$

Since we are not including interconnect capacitance,

 $C_{OUT} = 8 C_{G} = 80 \text{ fF}$

 $t_p = 0.69 (937.5 \Omega) (80 \text{ fF}) = 51.75 \text{ ps}$

When the previous input to the inverter is V_{DD} and tine new input is 0, the output voltage will be pulled down. The PMOS transistor is active when the new input is 0, so it conducts the current charging the capacitor.

 $t_{p} = 0.69 R_{P} C_{OUT}$

 $R_P = -\frac{3}{4} V_{DD} / I_{DSAT(P)}$

 $I_{\text{DSAT}(P)} = -\frac{1}{2} \text{ W/L } \mu_{\text{P}} \text{ C}_{\text{OX}} (\text{V}_{\text{GS}(P)} - \text{V}_{\text{TH}(P)})^2 = -\frac{1}{2} (2\mu \text{m} / 1 \ \mu\text{m}) (25000 \ \text{mm}^2/\text{Vs}) (5 \ \text{fF}/\mu\text{m}^2) (-5 \ \text{V} - -1 \ \text{V})^2 = -2 \ \text{mA}$

 $R_P = 1.875 \ k\Omega$

 $t_p = 0.69 (1.875 \text{ k}\Omega) (80 \text{ fF}) = 103.5 \text{ ps}$

b) Each NAND or NOR contributes 4 C_G, so we need $t_p = 0.69 (1.875 \text{ k}\Omega) (4 \text{ N} \bullet 10 \text{fF}) \le 2 \text{ ns where}$ N is the number of NAND or NOR. (Using R_P is worst-case.) N ≤ 38