EE 40
Homework \#6
Due Tuesday, April 22, 2003, 3:30 PM
40 Total Points Possible
Problem 1: 10 Points Possible

Problem 2: 8 Points Possible

Problem 3: 12 Points Possible

Problem 4: 10 Points Possible
Consider the logic circuit below. Each logic gate is constructed using the appropriate CMOS circuit given in lecture. With
$V_{D D}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=-\mathrm{V}_{T H(P)}=1 \mathrm{~V}$
$\mathrm{C}_{\mathrm{Ox}}=5 \mathrm{fF} / \mu \mathrm{m}^{2}$ for both transistors
$\mathrm{L}=1 \mu \mathrm{~m}$ for both transistors
$\mathrm{W}=2 \mu \mathrm{~m}$ for both transistors
$\lambda=0$ for both transistors
$\mu_{\mathrm{N}}=50000 \mathrm{~mm}^{2} /(\mathrm{V} \mathrm{s})$
$\mu_{\mathrm{P}}=25000 \mathrm{~mm}^{2} /(\mathrm{V} \mathrm{s})$

a) Find the low-to-high and high-to-low propagation delays t_{p} for the inverter in the circuit as shown. Take into account the pull-up and pull-down resistances of the transistors (which you must calculate here), as well as the gate capacitances of the attached gates (calculate also).
b) Suppose I require that the maximum propagation delay through the inverter is 2 ns . Determine the maximum fan-out: the maximum number of NAND or NOR gates that can be attached to the inverter output if the propagation delay through the inverter is to be 2 ns maximum.

