EE 40

Homework 5

Due Tuesday, April 15, 2003 at start of class (3:30 PM)
40 Total Points Possible
Problem 1: 8 Points Possible

For the NMOS transistor circuit at left, let
$\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=1 \mathrm{~V}$,
$\mathrm{W} / \mathrm{L} \mu_{\mathrm{N}} \mathrm{C}_{\mathrm{Ox}}=1 \mathrm{~mA} / \mathrm{V}^{2}$,
$\lambda=0 \mathrm{~V}^{-1}$.
Find $V_{D S}$ and I_{D} for the transistor.

Problem 2: 8 Points Possible

For the NMOS transistor circuit at left, let
$\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=1 \mathrm{~V}$,
$\mathrm{W} / \mathrm{L} \mu_{\mathrm{N}} \mathrm{C}_{\mathrm{OX}}=1 \mathrm{~mA} / \mathrm{V}^{2}$, $\lambda=0 \mathrm{~V}^{-1}$.

Find values for R_{1} and R_{2} so that the circuit will supply a constant 8 mA to the resistor when the transistor is in saturation mode.

Problem 3: 8 Points Possible

Find a width W_{N} for the NMOS transistor channel and width W_{P} for the PMOS transistor channel that together will make $\mathrm{V}_{\mathrm{M}}=2 \mathrm{~V}$.

Problem 4: 8 Points Possible

Problem 5: 8 Points Possible

Consider the CMOS inverter at right with
$\mathrm{W} / \mathrm{L} \mu \mathrm{C}_{\mathrm{Ox}}=1 \mathrm{~mA}$,
$\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=-\mathrm{V}_{\mathrm{TH}(\mathrm{P})}=1 \mathrm{~V}$, $\lambda=0$
and diode (large-signal model) with $\mathrm{V}_{\mathrm{F}}=0.7 \mathrm{~V}$.
Find the power absorbed by the transistor, resistor, and diode.

