<u>EE 40</u>

Homework 5

Due Tuesday, April 15, 2003 at start of class (3:30 PM)

40 Total Points Possible

Problem 1: 8 Points Possible

For the NMOS transistor circuit at left, let

Find V_{DS} and I_D for the transistor.

Problem 2: 8 Points Possible

For the NMOS transistor circuit at left, let

$$\begin{split} V_{TH(N)} &= 1 \ V, \\ W/L \ \mu_N C_{OX} &= 1 \ mA/V^2, \\ \lambda &= 0 \ V^{-1}. \end{split}$$

Find values for R_1 and R_2 so that the circuit will supply a constant 8 mA to the resistor when the transistor is in saturation mode.

Problem 3: 8 Points Possible

Find a width W_N for the NMOS transistor channel and width W_P for the PMOS transistor channel that together will make $V_M = 2 V$.

Problem 4: 8 Points Possible

Consider the unloaded CMOS inverter at right with

$$V_{DD} = 5 V$$
,
 $W/L \mu C_{OX} = 1 mA$,
 $V_{TH(N)} = -V_{TH(P)} = 1 V$,
 $\lambda = 0$.

Find $V_{DS(N)},\,I_{D(N)},\,V_{DS(P)},$ and $I_{D(P)}$ corresponding to V_{IN} = 3.5 V.

Consider the CMOS inverter at right with

and diode (large-signal model) with $V_F = 0.7 V$.

Find the power absorbed by the transistor, resistor, and diode.