

- H
W #5 changes
- H
N #6
- **–** \geqq ල
ග 등 $\stackrel{\sigma}{\leq}$ tonight, গে problems
- **–** D
G
0 next Wednesday (08/06)
- **–** \geqq ල
ග a good review for the
O midterm
- Return H
Ms 4 and
D ಊ o
J Monday (08/04)
- Return 工
W ω and
D corrected HWs $\overline{}$ and
D $\overline{\bm{\mathsf{c}}}$ o
J Friday (08/01)
- Midterm \equiv next Wednesday, 08/06/03!
- Practice problems 등 $\stackrel{\sigma}{\leq}$ tonight
- Review session? session?

- CMOS voltage transfer characteristic
- **–** SUGGESTION: Go over lecture $\vec{\circ}$ STEP-BY-STEP
- **–** Ask questions <u>in</u> discussion and
D office hours!

- CMOS inverter propogation delay analysis
- **–** Complete our propogation delay model
- **–** Understand M
CSS capacitances
- **–** Switch-RC model <u>ር</u> the
O CMOS inverter
- **–** Understand and
D 77
- CMOS layouts and
D fabrication steps
- Extract capacitances, \leq and
D $\overline{}$ from layout/crossection
- References: Lectures $\overset{\rightharpoonup }{\infty }$ and
D د
ص (Fall 1999) and
D Lecture \geq (Spring 2003)

MOSFET Capacitances MOSFET Capacitances

Node connected to the gate: **Node connected to the gate:**

Node connected to the drain (or source): Node connected to the drain (or source):

- providence between drain and bulk is C · pn junction capacitance between drain and bulk is C_{DB}
- capacitance CSB is shorted out since $\,<\,$ $\frac{\infty}{\mathsf{I}}$ \gtrsim in digital circuits

The CMOS Inverter The CMOS Inverter

12

First Order CMOS Inverter Model First Order CMOS Inverter Model

voltages The switches are "ganged" (move together) since they have the same trip The switches are "ganged" (move together) since they have the same trip

NMOS is closed when *vin* **>** *VTh* **; PMOS is open PMOS is closed when** *vin* Λ \sum_{τ} **; NMOS is open**

Reduce to a single switch (Fig. 2.10, R&R) **Reduce to a single switch (Fig. 2.10, R&R)**

«Leareded" CMD Suverters "Cascaded" CMOS Inverters

What's connected to the *vout* **node?**

Representative "load" ... possibly another CMOS inverter **Representative "load" … possibly another CMOS inverter**

Cascaded Identical CMOS Inverter Circuit Model Cascaded Identical CMOS Inverter Circuit Model

Simpler Representation Simpler Representation

operate in a complementary fashion NMOS and PMOS transistors have the same logic thresholds, but NMOS and PMOS transistors have the same logic thresholds, but operate in a complementary fashion \Rightarrow reduce to a single switch per **reduce to a single switch per inverter**

Transitions of interest: Transitions of interest:

1. *vin***1 increases above** \leq *Th* **: switch for inverter 1 moves to "D" position from previous "U" position**

previous "D. bosition **previous "D" position2.** *vin***1 decreases below** \leq *Tl* **: switch for inverter 1 moves to "U" position from**

Output Propagation Delay High to Low **Output Propagation Delay High to Low Version Date 04/03/03** Version Date 04/03/03

When V_{IN} goes High V_{OUT} starts decreases with time **goes High VOUT starts decreases with time**

downstream gate to begin to switch is V_{pp}/2 or 2.5V. Assume that the necessary voltage swing to cause the next **downstream gate to begin to switch is V Assume that the necessary voltage swing to cause the next DD/2 or 2.5V.**

high to low is the time to go from $V_{\text{DD}} = 5V$ to to $V_{\text{DD}}/2 = 2.5V$ high to low is the time to go from $\rm V_{\rm DD}$ **That is the propagation delay** τ**HL for the output to go from** = 5V to to $\rm V_{\rm DD}/2$ =2.5V

Copyright 2001, Regents of University of California Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003 **EECS 42 Intro. electronics for CS Spring 2003**

Lecture 18: 04/0703 A.R. Neureuther **Lecture 18: 04/0703 A.R. Neureuther**

Output Propagation Delay High to Low (Cont.) **Output Propagation Delay High to Low (Cont.)** Version Date 04/03/03 **Version Date 04/03/03**

When $V_{OUT} > V_{OUT-SAT-D}$ the available current is $I_{OUT-SAT-D}$ **When VOUT > VOUT-SAT-D the available current is IOUT-SAT-D**

is constant at $I_{\text{OUT-SAT-D}}$ and the capacitor discharges. For this circuit when $V_{OUT} > V_{OUT-SAT-D}$ the available current **is constant at IOUT-SAT-D and the capacitor discharges. For this circuit when VOUT > VOUT-SAT-D the available current**

The propagation delay The propagation delay is thus

$$
M = \frac{C_{OUT}\Delta V}{I_{OUT-SAT-D}} = \frac{C_{OUT}V_{DD}}{2I_{OUT-SAT-D}} = \frac{50\sqrt{F \cdot 2.5V}}{100\mu A} = 1.25ms
$$

Copyright 2001, Regents of University of California Copyright 2001, Regents of University of California

 Γ ecreament ~ 1000 X.R. Neurenher **Lecture 18: 04/0703 A.R. Neureuther**

Version Date 04/03/03 **Version Date 04/03/03**

Switched Equivalent Resistance Model Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source. **The above model assumes the device is an ideal constant current source.**

1) This is not true below $V_{\text{OUT-SAT-D}}$ and leads to in accuracies. **1) This is not true below VOUT-SAT-D and leads to in accuracies.**

and parallel connections is problematic. 2) Combining ideal current sources in networks with series **2) Combining ideal current sources in networks with series rallel connections is problematic.**

equal to the ∆t found above Instead define an equivalent resistance for the device by setting $0.69\rm R_\odot C$ **equal to the** Instead define an equivalent resistance for the device by setting $0.69 \rm R_{\rm D}C$ **t found above**

$$
\Delta t = \frac{C_{OUT}V_{DD}}{2I_{OUT-SAT-D}} = 0.69R_DC_{OUT} \qquad \qquad \begin{array}{c}\n\text{This gives} \\
\frac{V_{DD}}{V_{DD}} = 0.69R_DC_{OUT} \\
\text{if} \\
\frac{V_{DD}}{V_{DD}} = \frac{3}{2} \cdot \frac{5V}{2V_{DD}} = 37.5 \text{k}\Omega\n\end{array}
$$

This gives

$$
R_D = \frac{V_{DD}}{2 \cdot (0.69) I_{OUT-SAT-D}} \approx \frac{3}{4} \frac{V_{DD}}{4 I_{OUT-SAT-D}} = \frac{3}{4} \frac{5V}{100 \mu A} = 37.5 k\Omega
$$

 $\frac{1}{2}$

Copyright 2001, Regents of University of California Copyright 2001, Regents of University of California

Each device can now be replaced by this equivalent resistor.

Each device can now be replaced by this equivalent resistor.

 Γ ectrine 18: 04/0703 $\,$ X.K. Neural permitted to $\,$ **Lecture 18: 04/0703 A.R. Neureuther**

Version Date 04/03/03 **Version Date 04/03/03**

from $(0,0)$ to $(I_{\text{OUT-SAT-D}}$, ³/₄ V_{DD}). Approximate the NMOS device curve by a straight line **from (0,0) to (I Approximate the NMOS device curve by a straight line OUT-SAT-D, ¾ VDD**

Interpret the straight line as a resistor with **Interpret the straight line as a resistor with**

 $1/({\rm slog}) = {\rm R}$

 $=\frac{3}{\Lambda}$ $\sqrt{\frac{1}{\text{D}}}$ $\sqrt{\frac{1}{\text{N}}\text{N}}$ $\frac{1}{\text{N}}$

 $1/(slop) = R = \frac{3}{4} V_D V_{SAT}$

Copyright 2001, Regents of University of California Copyright 2001, Regents of University of California

 Γ ectrine 18: 04/0703 $\,$ X.K. Neural permitted to $\,$ **Lecture 18: 04/0703 A.R. Neureuther**

Version Date 04/03/03 **Version Date 04/03/03**

Switched Equivalent Resistance Values **Switched Equivalent Resistance Values**

geometrical layout, design style and technology node. **geometrical layout, design style and technology node.** The resistor values depend on the properties of silicon, **resistor values depend on the properties of silicon,**

higher than p-type. n-type silicon has a carrier mobility that is 2 to 3 times **higher than p-type. n-type silicon has a carrier mobility that is 2 to 3 times**

width/length in the geometrical layout. **width/length in the g** The resistance is inversely proportion to the gate **The resistance is inversely proportion to the gate eometrical layout.**

predetermined fixed size **predetermined fixed size. Design styles may restrict all NMOS and PMOS to be of a** Design styles may restrict all NMOS and PMOS to be of a

inversely with the linewidth. **inversely with the line** The current per unit width of the gate increases nearly **The current per unit width of the gate increases nearly**

For convenience in EE 42 we assume R_D = RU = 10 k $\bf C$

 \circ

Copyright Regents University of California

Additional Steps for CMOS Additional Steps for CMOS

Well Formation Well Formation

Process (before transistor fabrication) **Process (before transistor fabrication)**

- **1. start with p-type wafer; grow 250 nm oxide** 1. start with p-type wafer; grow 250 nm oxide
- 2. pattern oxide with n-well mask **2. pattern oxide with n-well mask**
- 3. implant with phosphorus and anneal to form a 3 **3. implant with phosphorus and anneal to form a 3** hm-deep n-type region μ**m-deep n-type region**

 $\overline{}$

AND ONE MORE COMPLICATION: AND ONE MORE COMPLICATION:

We need contacts to "vell and body" or well and body of p-region We need contacts to "body" or well and body of p-region

Easy to do - just modify "select" masks and oxide masks, i.e., Easy to do – just modify "select" masks and oxide masks, i.e.,

① Create thin oxide spots for contact in original oxide mask, and Create thin oxide spots for contact in original oxide mask, and

2 Allow openings in select masks to dope these regions Allow openings in select masks to dope these regions

p implant area in substrate is to make electrical contact by Al wire easier p implant area in substrate is to make electrical contact by Al wire easier

How to get n-regions implanted selectively with arsenic? How to get n-regions implanted selectively with arsenic?

Could simply invert polarity of select mask at contacts. Could simply invert polarity of select mask at contacts.

 \circ

Lecture 18 EECS 40 Fall 1999 Copyright Regents University of California W Oldhamia W Oldha W Oldham

Basic CMOS Process **Basic CMOS Process**

Copyright Regents University of California

Well mask + select mask(s) + NMOS process **Well mask + select mask(s) + NMOS process**

W Oldham

Separate Masks Separate Masks

Well, oxide, and polysilicon masks **Well, oxide, and polysilicon masks**

Separate Masks (cont.)

Separate Masks (cont.)

Select masks, contact mask, and metal mask

Select masks, contact mask, and metal mask

CMOS Process Sequence CMOS Process Sequence

- **1. p-type starting material; grow 500 nm of oxide** 1. p-type starting material; grow 500 nm of oxide
- **2. pattern oxide with well mask** 2. pattern oxide with well mask
- **3. implant phosphorus and anneal ("well drive in") to a depth** 3. implant phosphorus and anneal ("well drive in") to a depth **of 3** μ**m**
- **4. strip off oxide** 4. strip off oxide
- **5. grow 500 nm of oxide** 5. grow 500 nm of oxide
- **6. pattern with oxide mask** 6. pattern with oxide mask
- **7. grow 5 nm of oxide** 7. grow 5 nm of oxide
- **8. deposit 500 nm of n** 8. deposit 500 nm of n+ polysilicon **polysilicon**
- **9. pattern with poly mask** 9. pattern with poly mask
- 10. spin on resist **10. spin on resist**
- 11. pattern with the select mask (dark field) **11. pattern with the select mask (dark field)**
- 12. implant boron; strip off resist **12. implant boron; strip off resist**
- 13. spin on resist **13. spin on resist**
- **14. pattern with the select mask (clear field)** 14. pattern with the select mask (clear field)

and substrate except for well contacts Same pattern and substrate except for well Same pattern

CMOS Process Sequence (cont.) CMOS Process Sequence (cont.)

- 15. implant arealimplants to dist and anneal implants to from **15. implant arsenic; strip off resist and anneal implants to form** source and drain regions **source and drain regions**
- 16. deposit 500 nm of oxide **16. deposit 500 nm of oxide**
- 17. pattern using contact mask (dark field) **17. pattern using contact mask (dark field)**
- 18. deposit 1 um of aluminum **18. deposit 1** μ**m of aluminum**
- 19. pattern using metal mask (clear field) **19. pattern using metal mask (clear field)**

CMOS Cross Sections CMOS Cross Sections

- Completed our propogation delay model
- Switch-RC model <u>ር</u> the
O CMOS inverter
- and calculations
- CMOS layouts and
D fabrication steps
- References: Lectures $\overset{\rightharpoonup }{\infty }$ and
D د
ت (Fall 1999) and
D Lecture \geq (Spring 2003)

- Barring unforseen circumstances: GUEST LECTURE —
ズ **PROF.** TSU JAE-KING
- H
N #5 due!
- START PREPARING T
R
R MIDTER
MIDTER