Lecture #23

Warning for HW Assignments and Exams:
- Make sure your writing is legible!!

OUTLINE
- MOSFET I_D vs. V_{GS} characteristic
- Circuit models for the MOSFET
 - resistive switch model
 - small-signal model

Reference Reading
- Rabaey et al.: Chapter 3.3.2
- Howe & Sodini: Chapter 4.5

MOSFET I_D vs. V_{GS} Characteristic

- Typically, V_{DS} is fixed when I_D is plotted as a function of V_{GS}

Long-channel MOSFET

$$V_{DS} = 2.5\, V > V_{DSAT}$$

Short-channel MOSFET

$$V_{DS} = 2.5\, V > V_{DSAT}$$
MOSFET V_T Measurement

- V_T can be determined by plotting I_D vs. V_{GS}, using a low value of V_{DS}:

$$I_D = k'_n \frac{W}{L} \left[V_{GS} - V_T - \frac{V_{DS}}{2}\right]V_{DS}$$

Subthreshold Conduction (Leakage Current)

- The transition from the ON state to the OFF state is gradual. This can be seen more clearly when I_D is plotted on a logarithmic scale:

- In the subthreshold ($V_{GS} < V_T$) region,

$$I_D \propto \exp\left(\frac{qV_{GS}}{nkT}\right)$$

This is essentially the channel-source pn junction current. (Some electrons diffuse from the source into the channel, if this pn junction is forward biased.)
Qualitative Explanation for Subthreshold Leakage

- The channel V_c (at the Si surface) is capacitively coupled to the gate voltage V_G:

 ![Circuit Model Diagram]

 Using the capacitive voltage divider formula (Lecture 12, Slide 7):

 $$
 \Delta V_c = \frac{C_{ox}}{C_{ox} + C_{dep}} \Delta V_G
 $$

 The forward bias on the channel-source pn junction increases with V_G scaled by the factor $C_{ox}/(C_{ox} + C_{dep})$:

 $$
 \Rightarrow n = \frac{C_{ox} + C_{dep}}{C_{ox}} = 1 + \frac{C_{dep}}{C_{ox}}
 $$

Slope Factor (or Subthreshold Swing) S

- S is defined to be the inverse slope of the log (I_D) vs. V_{GS} characteristic in the subthreshold region:

 $$
 S \equiv n \left(\frac{kT}{q} \right) \ln(10)
 $$

 Units: Volts per decade

 Note that $S \geq 60$ mV/dec at room temperature:

 $$
 \left(\frac{kT}{q} \right) \ln(10) = 60 \text{ mV}
 $$
V_T Design Trade-Off

(Important consideration for digital-circuit applications)

- Low V_T is desirable for high ON current
 \[I_{DSAT} \propto (V_{DD} - V_T)^\eta \quad 1 < \eta < 2 \]
 where V_{DD} is the power-supply voltage

…but high V_T is needed for low OFF current

\[\text{log } I_D \text{ vs. } V_{GS} \]

- Low V_T
 - $I_{OFF,low\,VT}$
- High V_T
 - $I_{OFF,high\,VT}$

The MOSFET as a Resistive Switch

- For digital circuit applications, the MOSFET is either OFF ($V_{GS} < V_T$) or ON ($V_{GS} = V_{DD}$). Thus, we only need to consider two I_D vs. V_{DS} curves:
 1. the curve for $V_{GS} < V_T$
 2. the curve for $V_{GS} = V_{DD}$

\[I_D \text{ vs. } V_{DS} \]

- $V_{GS} = V_{DD}$ (closed switch)
- $V_{GS} < V_T$ (open switch)
Equivalent Resistance R_{eq}

- In a digital circuit, an n-channel MOSFET in the ON state is typically used to discharge a capacitor connected to its drain terminal:
 - gate voltage $V_G = V_{DD}$
 - source voltage $V_S = 0$ V
 - drain voltage V_D initially at V_{DD}, discharging toward 0 V

The value of R_{eq} should be set to the value which gives the correct propagation delay (time required for output to fall to $\frac{1}{2}V_{DD}$):

$$R_{eq} \approx \frac{3}{4} \frac{V_{DD}}{I_{DSATn}} \left(1 - \frac{5}{6} \lambda n V_{DD} \right)$$

Typical MOSFET Parameter Values

- For a given MOSFET fabrication process technology, the following parameters are known:
 - V_T (~0.5 V)
 - C_{ox} and k' (<0.001 A/V²)
 - V_{DSAT} (≤ 1 V)
 - λ (≤ 0.1 V⁻¹)

Example R_{eq} values for 0.25 µm technology ($W = L$):

<table>
<thead>
<tr>
<th>V_{DD} (V)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS (kΩ)</td>
<td>35</td>
<td>19</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>PMOS (kΩ)</td>
<td>115</td>
<td>55</td>
<td>38</td>
<td>31</td>
</tr>
</tbody>
</table>

How can R_{eq} be decreased?
MOSFET Model for Analog Circuits

- For analog circuit applications, the MOSFET is biased in the saturation region, and the circuit is designed to process incremental signals.
 - A DC operating point is established by the bias voltages V_{BIAS} and V_{DD}, such that $V_{\text{DS}} > V_{\text{GS}} - V_T$.
 - Incremental voltages v_s and v_{ds} that are much smaller in magnitude perturb the operating point.
 - The MOSFET small-signal model is a circuit which models the change in the drain current (i_d) in response to these perturbations.

![MOSFET Diagram]

NMOSFET Small-Signal Model

- $i_d = \frac{\partial i_D}{\partial v_{GS}} v_{gs} + \frac{\partial i_D}{\partial v_{DS}} v_{ds} = g_m v_{gs} + g_o v_{ds}$

- $g_m \approx \frac{\partial i_D}{\partial v_{GS}} \approx \frac{W}{L} k'(V_{GS} - V_T)$ transconductance

- $g_o \approx \frac{\partial i_D}{\partial v_{DS}} \approx \lambda I_D$ output conductance