EECS 40

Problem Set 6 (Short) Due Friday, July 19 at 12 PM

Summer 2002

Prob 1) Thévenin and Norton Equivalents

- (a) Refer to Figure 4.41, page 172 in the Textbook. This is a voltage amplifier (its actually a model of a bipolar transistor amplifier, but you do not need to know that). Suppose $R_L = r_{\pi} = 5K$, and $\beta = 100$. What is the voltage gain V_{AB} / V_1 . (Note the sign of voltage gain can be positive or negative).
- (b) Imagine the circuit placed in a box with only the input terminals (where V_1 is attached) sticking out. Nothing is connected to A-B. You are to find the Thévenin equivalent of the input (with V_1 removed of course). Note that the Thévenin resistance is not simply r_{π} .
- (c) Now do the reverse; find the Thévenin equivalent circuit of the circuit as seen from the terminals AB. Assume V_1 is 1V.

Prob 2) Load –line method

Box A below has the non-linear I-V characteristics shown in Figure 1. The box is connected to circuit B below. Find the voltage V_{AB} as well as the current, I, when the two circuits are connected with terminals a and b of box A connected to the corresponding terminals a and b of circuit B.

Figure 1: Non-linear circuit

Circuit B

Prob 4) Nonlinear problems

Consider the following circuit. You are find the "bias point" of the nonlinear device X. In other words find the current Ix and the Voltage Vx.

You may use graphical analysis and the answer need only be accurate within 20% or 1mA or 1mV, whichever is greater. Solve for the following two cases:

- a) Device X has a nonlinear I-V characteristic of $Ix = 10^{-15} \exp(Vx/.026)$
- b) Device X has a nonlinear I-V characteristic with $Ix = 10^{-4} V^2$

Prob 5) Operational Amplifier (use the ideal op-amp model)

Solve for Vout in terms of Iin for the following circuit:

