Department of Electrical Engineering and Computer Sciences
 College of Engineering
 University of California, Berkeley

EECS 40
Summer 2002
Problem Set 6 (Short)
Due Friday, July 19 at 12 PM

Prob 1) Thévenin and Norton Equivalents
(a) Refer to Figure 4.41, page 172 in the Textbook. This is a voltage amplifier (its actually a model of a bipolar transistor amplifier, but you do not need to know that). Suppose $R_{L}=r_{\pi}=5 K$, and $\beta=100$. What is the voltage gain $V_{A B} / V_{1}$. (Note the sign of voltage gain can be positive or negative).
(b) Imagine the circuit placed in a box with only the input terminals (where V_{1} is attached) sticking out. Nothing is connected to A-B. You are to find the Thévenin equivalent of the input (with V_{1} removed of course). Note that the Thévenin resistance is not simply r_{π}.
(c) Now do the reverse; find the Thévenin equivalent circuit of the circuit as seen from the terminals AB . Assume V_{1} is 1 V .

Prob 2) Load -line method

Box A below has the non-linear I-V characteristics shown in Figure 1. The box is connected to circuit B below. Find the voltage V_{AB} as well as the current, I , when the two circuits are connected with terminals a and b of box A connected to the corresponding terminals a and b of circuit B .

$$
I=-V^{2}, V \geq 0
$$

$$
\mathrm{I}=\mathbf{0}, \mathrm{V}<\mathbf{0}
$$

Figure 1: Non-linear circuit

Circuit B

Prob 4) Nonlinear problems

Consider the following circuit. You are find the "bias point" of the nonlinear device X. In other words find the current Ix and the Voltage Vx .

You may use graphical analysis and the answer need only be accurate within 20% or 1 mA or 1 mV , whichever is greater. Solve for the following two cases:
a) Device X has a nonlinear $\mathrm{I}-\mathrm{V}$ characteristic of $\mathrm{Ix}=10^{-15} \exp (\mathrm{Vx} / .026)$
b) Device X has a nonlinear I-V characteristic with $\mathrm{Ix}=10^{-4} \mathrm{~V}^{2}$

Prob 5) Operational Amplifier (use the ideal op-amp model)
Solve for Vout in terms of in for the following circuit:

