Department of Electrical Engineering and Computer Sciences University of California, Berkeley

EECS 40 Summer 2002

Ben Wild

Problem Set 2 (due July 5 at 12PM)
 Note: Problem set must be placed in EECS 40 boxes outside 275 Cory by 12PM DO NOT BRING TO CLASS - that is too late

Problem 1 Refer to the solutions to Problem 4 from PS \#1 This is a simple 2-input Exclusive OR realized with 5 NAND gates.
(a) Consider possible input transitions such as A remaining low and B going from high to low, or the opposite, or A and B going from low to high together, or..... How many different transitions are possible? Hint: it is more than 10 !
(b) Compare two transitions starting with $\mathrm{A}=0, \mathrm{~B}=1$. If either A goes to 1 or B goes to 0 , the output will toggle from 1 to 0 . Do these two transitions have the same number of gate delays? What are they?

Problem 2 We have a 4 -input logic function (inputs $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and output \mathbf{F}). \mathbf{F} is true only if $\mathbf{A B C D}=$ 0101. Construct the circuit for \mathbf{F} using (a) NAND gates of up to 4 inputs, (b) NAND gates with only 2 inputs. (Hint: first figure out how to construct a 4 input NAND gate out of 2 input NAND gates. It takes quite a few.)

Problem 3

(a) Another circuit you can construct with 4-input NAND gates is a 2-bit comparator. This is a circuit that compares two binary numbers (here each of 2 bits) and outputs a 1 only if the numbers are identical. Clearly there are 16 possibilities of which only 4 give a output "true". Call one number $\mathbf{A}_{1} \mathbf{A}_{2}$ and the second $\mathbf{B}_{1} \mathbf{B}_{2}$ with the output \mathbf{F}. Write the Boolean expression for F and show the logic circuit using NAND gates of up to 4 inputs.
(b) Design a 2 bit comparator using 2 input XOR gates and 2 input NAND gates.

Problem 4 A 2:1 multiplexer circuit has 3 inputs, A, B and S. The output Z is equal to A if $S=0$, and B if $S=1$. (a) Write down the truth table of the output Z based on the inputs A, B, S. (b) From the truth table write down a Boolean expression for Z as a function of $\mathrm{A}, \mathrm{B}, \mathrm{S}$. (c) Simplify this expression using the distributive law $(\mathbf{A B}+\mathbf{C B}=(\mathbf{A}+\mathbf{C}) \mathbf{B})$ and the identity law $(\mathbf{A}+\mathbf{A}=\mathbf{1})(\mathrm{d})$ show an implementation of this circuit using only 2 input NAND gates.

