Multiresolution coding and wavelets

= Predictive (closed-loop) pyramids

Open-loop (“Laplacian”) pyramids

= Discrete Wavelet Transform (DWT)

= Quadrature mirror filters and conjugate quadrature filters
Lifting and reversible wavelet transform

= Wavelet theory

s Embedded zero-tree wavelet (EZW) coding
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Interpolation error coding, |
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Interpolation error coding, Il

signals to be encoded
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Predictive pyramid, |
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Predictive pyramid, I

Number of samples to be encoded =

1 1 N o
1+—+—+...] =—— x number of original image samples
N N N-1
R

subsampling factor
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Predictive pyramid, Il

signals to be encoded
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_ ~ Comparison: _
interpolation error coding vs. pyramid

= Resolution layer #0, interpolated to original size for display

Interpolation Error Coding Pyramid

= o]
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_ ~ Comparison: _
interpolation error coding vs. pyramid

= Resolution layer #1, interpolated to original size for display

Interpolation Error Coding Pyramid
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_ ~ Comparison: _
interpolation error coding vs. pyramid

= Resolution layer #2, interpolated to original size for display

Interpolation Error Coding Pyramid

= o]
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_ ~ Comparison: _
interpolation error coding vs. pyramid

= Resolution layer #3

Interpolation Error Coding Pyramid

(original)
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Open-loop pyramid (Laplacian pyramid)

Input
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Reconstructed
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T [Burt, Adelson, 1983]
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When multiresolution coding was a new idea . . .

This manuscript is okay if compared to some of the weaker papers.
[. . .] however, | doubt that anyone will ever use this algorithm again.

Anonymous reviewer of Burt and Adelson‘s original paper, ca. 1982
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Cascaded analysis / synthesis filterbanks

K]

J
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Discrete Wavelet Transform

m Recursive application of a two-band filter bank to the
lowpass band of the previous stage yields octave band
splitting:

frequency

m Same concept can be derived from wavelet theory:
7% Discrete Wavelet Transform (DWT)
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2-d Discrete Wavelet Transform
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2-d Discrete Wavelet Transform example

Bernd Girod: EE398A Image Communication | Multiresolution & Wavelets no. 16




2-d Discrete Wavelet Transform example
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2-d Discrete Wavelet Transform example
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2-d Discrete Wavelet Transform example
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2-d Discrete Wavelet Transform example

: -H
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Two-channel filterbank

X(Z‘)r hy 2 ¥ 3 ,?)f‘
_>h1—>2* 2*_> —

9,

K@) =2 (2)9,(2) +h ()8, 2)]x(2)
+2 (28 (D) +h(-Da(@]x(-2)

Aliasing
= Aliasing cancellation if :
9,(2) =h(=2)
_gl(z) = ho (-2)
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Example: two-channel filter bank with
perfect reconstruction
= Impulse responses, analysis filters: = Mandatory in JPEG2000
Lowpass Highpass = Frequency responses:
(jlil‘_l) 1-11 Ih lg |
412121214 Z’?’Z g gl
8_2
= Impulse responses, synthesis filters &
Lowpass Highpass ?1 lg h, |
Flﬂ gzﬁzg =
4'2'4 42 2 24 L‘%’
0
. ) 0 b T
“Biorthogonal 5/3 filters” ?
“LeGall filters”
Frequency
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Classical quadrature mirror filters (QMF)

= QMFs achieve aliasing Example:
cancellation by choosing 16-tap QMF filterbank
| I i |
— _ o T T 1
h(2) =h(-2) - Sai |
= —gl(z) = go(_z) 10 i i i
[Croisier, Esteban, Galand, 1976] » | é _
= Highpass band is the mirror l I ' PN |
image of the lowpass band 0 dr\ , /\/ : \(\ /il‘.\ [ \
in the frequency domain .', el . V /5 v
= Need to design only one ! frequency o )
prototype filter
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Conjugate quadrature filters

m Achieve aliasing cancelation by

n@=g(2 ) =1(2)
hl(z) = gl(z_l) = zf (—Z_l> [Smith, Barnwell, 1986]

Prototype filter

Impulse responses
hy [k] = go[—K] = f [k]

h[K]=g,[-k]=(-1)"" f [ (K +1)]|

m Orthonormal subband transform!
m Perfect reconstruction: find power complementary prototype filter

F (o) +[F(otr) =2
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Lifting

= Analysis filters

even samples x[2n] I low band y,
_—?—p -—— > >

ﬂ’L—l ﬂ“L
i?g:irz]ples % T o 4»@% T I high band y,

[Sweldens 1996]

= L “lifting steps”
m First step can be interpreted as prediction of odd samples
from the even samples
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Lifting (cont.)

m Synthesis filters

even samples x[2n] ) y l z_ ' low band y,
ﬂl /}2 ﬂ’ L-1 ﬂ“ L

high band y,

L g

oddﬁsamples @l} o

x[2n+1]

m Perfect reconstruction (biorthogonality) is directly built into
lifting structure

m Powerful for both implementation and filter/wavelet design
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Example: lifting implementation of 5/3 filters

low band
even samples x| 2n] J\? 3:0
~(L+2)||1+ 27"
2 4
odd samples
> Y 172
x[2n+1] = high band y,

Verify by considering response to unit impulse in even and
odd input channel.

=f
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Reversible subband transform

m Observation: lifting operators can be nonlinear.
= Incorporate the necessary rounding into lifting operator:

evemn]_,g_, o l and Yo
4 A A
T S -’5 T > high band y,

m Used in JPEG2000 as part of 5/3 biorthogonal wavelet
transform

odd samples
x[2n+1]
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Wavelet bases

Consider Hilbert space £* (IR)of finite-energy functions x = x(t).

Wavelet basis for £7(R): family of linearly independent functions
“mother

l//r(1m) (t) — \/FV/A(/Z_mt _ n) wavelet”

that span £* (IR ). Hence any signal x € £*(R) can be written as

> 3y ]y

M=—00 N=—00

X =
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Multi-resolution analysis

Nested subspaces
VA eyl cy@ oy oy e o2 (R)

Upward completeness Uv =2 (R)

meZ

Downward completeness (V™ = {0}

mez
Self-similarity x(t)ev® iff X(Z‘mt) ev™

Translation invariance x(t) eV iff x(t-n)eV® forall nez

There exists a "scaling function” ¢ (t) with integer translates ¢, (t) =g (t-n)

such that {p,} _ forms an orthonormal basis for v *
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Multiresolution Fourier analysis

' Bernd Girod: EE398A Image Communication | Multiresolution & Wavelets no. 31

Relation to subband filters

Since V© =V ™, recursive definition of scaling function

t)= nigo[n] \/_z go[n]e(2t-n)

linear combination
of scaling functions in V

Orthonormality

s[n]=(a".0")
- J[Salila O a1 0 o
=2al! Jos [i-2n){ol ™) = X o iJas[i~2n]

%,—/
g [k] unit norm and orthogonal
to its 2-translates: corresponds
to synthesis lowpass filter of
orthonormal subband transform

(]
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Wavelets from scaling functions

W ® is orthogonal complement of V® in v (P
w® 1 v® and WP OvP =y e
Orthonormal wavelet basis {y/g(’)} forw© v

v(t)= Y ol (1) =v2 Y o [nle, (2t-n)

linear combination
of scaling functions in v

Using conjugate quadrature high-pass synthesis filter
6,[n]=(-1)"" g, [~(n-1)]

The mutually orthonormal functions, {y/ﬁo)} and {(pﬁo’} , together span V V.
n nez

€.

Easy to extend to dilated versions of l//(t) to construct orthonormal wavelet basis

{w,ﬁm)}n’msz for £ (R).
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Calculating wavelet coefficients for a continuous signal

= Signal synthesis by discrete filter bank
Suppose continuous signal X (t) =" yi [n] ¢(t-n)=>"y" [n] ¢\” eV
nez

nez

Write as superposition of x” (t) eV and w® (t) ew®
XV ()= v [i] ol + D v (3] vy
ieZ jeZ
Xty ® W (t)ew®

=z¢£°>[2yff>[n] go[n—zithi”[J]gi[n—zi]]

nezZ ieZ jez

¥ ]

= Signal analysis by analysis filters hy[K], h;[K]
= Discrete wavelet transform
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Discrete Wavelet Transform

v [n]

o' [n]

x(t) v [n]

— X(t)
—|Sampling Interpolation
o[t
4 Bernd Girod: EE398A Image Communication | Multiresolution & Wavelets no. 35
Different wavelets
Haar Daubechies
2/2 coeffs. 8/8
Cohen-
Symlets Daubechies-
8/8 Feauveau
17/11

[Gonzalez, Woods, 2001]
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Daubechies orthonormal 8-tap filters

g (n) hy(n)
1 1

Ll

[Gonzalez, Woods, 2001]
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8-tap Symlets

hgln) = h(—n) Ii(ny = hy(—n)
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Biorthogonal Cohen-Daubechies-Feauveau 17/11 wavelets
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Wavelet compression results

Original
512x512 Error
8bpp images

enlarged
[Gonzalez, Woods, 2001]
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Embedded zero-tree wavelet algorithm

——— ) “ux| = Idea: Conditional coding of

XX XX

XXXX all descendants (incl.

x | ,,Parent* Chlldr.er-1) |
- | = Coefficient magnitude >

\ | threshold: significant
\ coefficients

X]| —p XX
XX

«  ,,Children*

XX

= Four cases
X e ZTR: zero-tree, coefficient
and all descendants are
not significant
e |Z: coefficient is not
significant, but some
descendants are

XXXX

XXXX significant
XXXX .. . .
XXXX e POS: positive significant
XX XX I13 . . .p
xxxx ”Descendants e NEG: negative significant
XXXX |
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Embedded zero-tree wavelet algorithm (cont.)

» For the highest bands, ZTR and 1Z symbols are merged into
one symbol Z

m Successive approximation gquantization and encoding
e Initial ,dominant“ pass
 Setinitial threshold T, determine significant coefficients
* Arithmetic coding of symbols ZTR, 1Z, POS, NEG
e Subordinate pass

» Refine magnitude of all coefficients found significant so far by one bit
(subdivide magnitude bin by two)

« Arithmetic coding of sequence of zeros and ones.
e Repeat dominant pass
» Omit previously found significant coefficients

» Decrease threshold by factor of 2, determine new significant
coefficients

« Arithmetic coding of symbols ZTR, IZ, POS, NEG

e Repeat subordinate and dominate passes, until bit budget is
exhausted.
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Embedded zero-tree wavelet algorithm (cont.)

= Decoding: bitstream can be truncated to yield a coarser
approximation: ,embedded” representation

» Further details: J. M. Shapiro, ,,Embedded image coding using
zerotrees of wavelet coefficients,* IEEE Transactions on Signal
Processing, vol. 41, no. 12, pp. 3445-3462, December 1993.

= Enhancement SPIHT coder: A. Said, A., W. A. Pearlman, ,,A
new, fast, and efficient image codec based on set partitioning in
hierarchical trees,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 63, pp. 243-250, June 1996.
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_ ~Summary: _
multiresolution and subband coding

= Resolution pyramids with subsampling 2:1 horizontally and vertically
= Predictive pyramids: quantization error feedback (,closed loop®)

= Transform pyramids: no quantization error feedback (,open loop*)

= Pyramids: overcomplete representation of the image

= Critically sampled subband decomposition: number of samples not
increased

= Discrete Wavelet Transform = cascaded dyadic subband splits

= Quadrature mirror filters and conjugate quadrature filters: aliasing
cancellation

= Lifting: powerful for implementation and wavelet construction
= Lifting allows reversible wavelet transform
m Zero-trees: exploit statistical dependencies across subbands
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