
A Tutorial On Camera Models

Bryan Poling

University of Minnesota

1 Introduction

A camera model is a function which maps our 3-dimensional world onto a 2-dimensional
plane, called the image plane. Generally, this function is designed to closely model a
real-world, physical camera. There are many camera models of varying complexity, and
a natural dividing line which helps categorize them is whether or not they are able to
capture perspective. Perspective, or the perspective effect is simply the property that
objects far away from us appear smaller than objects up close. This is obviously the
case with human vision, and with most cameras in the real world. However, there are
instances where this is not the case, and there are many more instances where, even
though the perspective effect is present, it is acceptable (and sometimes advantageous)
to ignore it.

We will start in §2 by developing homogeneous coordinates, which are pervasive
in the subject of computer vision, and needed to work with all but the simplest camera
models. Then, in §3 we explore the most general models in common use, all of which
are capable of capturing perspective. Finally, in §4 we study the simpler models which
are not capable of capturing perspective.

2 Homogeneous Coordinates

Homogeneous Coordinates provide another way of representing points in space. To
represent a point in Rn using standard Euclidean coordinates, we use a vector of n ele-
ments, encoding what combination of the standard basis vectors is needed to construct
the point. With homogeneous coordinates we use a vector of n + 1 elements instead.
The conversion between homogeneous and Euclidean coordinates is given by:

x1
x2
...
xn
w

↔

x1/w
x2/w

...
xn/w

 (1)

We use square brackets on the left to specifically indicate that the vector should be
interpreted as a set of homogeneous coordinates. We will use parenthesis for euclidean
coordinates, and when no specific interpretation is intended (ie. for formal manipula-
tion). The↔ symbol indicates that these vector represent the same point in space. These
are conventions we will continue to use for vectors.

2 Bryan Poling

The first thing to notice is that homogeneous coordinates over-parametrize space. In
particular, if we multiply a homogeneous vector by a non-zero constant, this constant
is multiplied into every xi, as well as w. Thus, the corresponding euclidean vector is
unaffected. In summary, homogeneous representation is scale-invariant. The proper way
to “scale” a point by a constant α 6= 0 is to multiply all but the last coordinate of the
homogeneous vector by α, or equivalently to divide the last coordinate by α.

Homogeneous coordinates are an interesting subject on their own, but our interest
in them here comes from a few specific properties. First, one may recall that when
using euclidean coordinates, we can effect an arbitrary linear transformation on a point
by left-multiplying by an appropriate square matrix. With homogeneous coordinates,
we can effect an arbitrary affine transformation in this way. That is, we can apply any
linear transformation, accompanied by any translation by left-multiplying by the correct
matrix. To see this, let B be any 3-by-3 matrix (which one would apply to euclidean
vectors in R3). Let T be a euclidean vector in R3, representing a translation amount.
Consider a point with the following homogeneous and euclidean representations:

x1
x2
x3
w

↔
x1/w
x2/w
x3/w

 (2)

Then observe:

(
B T

0 0 0 1

)
x1
x2
x3
w

 =

B
x1
x2
x3

+ wT

w

↔ B

x1/w
x2/w
x3/w

+T (3)

Thus, the homogeneous operation:
x1
x2
x3
w

 −→ (
B T

0 0 0 1

)
x1
x2
x3
w

 (4)

is equivalent to the following operation in euclidean coordinates:y1
y2
y3

 −→ B

y1
y2
y3

+T (5)

The other important property of homogeneous coordinates is that “perspective pro-
jection” can also be implemented through matrix multiplication. The relevance of this
will be apparent in the next section, but for now, imagine that the following operation
is important to us: y1

y2
y3

 −→ (
y1/y3
y2/y3

)
(6)

A Tutorial On Camera Models 3

This is a non-linear operation, and so cannot (using standard euclidean coordinates)
be expressed using matrix multiplication. However, this is equivalent to the following:

x1
x2
x3
w

 −→
1 0 0 0

0 1 0 0
0 0 1 0



x1
x2
x3
w

 =

x1x2
x3

 (7)

The homogeneous vector on the left represents the point with euclidean coordinates:x1/w
x2/w
x3/w

 (8)

and the vector on the right represents the point with euclidean coordinates:(
x1/x3
x2/x3

)
=

(
x1/w
x3/w
x2/w
x3/w

)
(9)

Thus, this simple matrix multiply, when using homogeneous coordinates, has the
same effect as (6) has when using euclidean coordinates.

3 Cameras Which Capture The Perspective Effect

3.1 The Pinhole, or Central-Projection Camera

The simplest camera in this category is the pinhole camera. In this model, we place a
plane (this will be the image plane) some distance from a point which we will call the
camera center. We map a point into the image plane by translating the point on a straight
line towards the camera center, until it intersects the image plane.

Camera Center

Point in 3-D Space

Image Plane

Fig. 1: Operation of projecting a point into the image plane for a pinhole camera

For simplicity, we will first assume that the camera center is at the origin of a 3-D
coordinate frame. We will also assume that the image plane is positioned parallel to
the xy-plane, at position z = f . We will define a 2-D coordinate system in the image

4 Bryan Poling

plane with origin at position (0, 0, f)T (in 3-D euclidean coordinates). The x and y axes
of this new frame will be parallel to the x and y axes of the 3-D frame. We will often
use the term “image coordinates” when we are referring to this new frame. Imagine a
point in 3-D space with y-coordinate 0, and lets see how it gets projected into the image
plane.

Camera

Center

Point with

3-D coordinates:

(X,0,Z)T

Image Plane

f

x
y

x

y

Fig. 2: Similar triangles in pinhole camera projection

By looking at similar triangles, we can see that the euclidean image coordinates of
the projection of the point in question are f(X/Z, 0)T . Similarly, if a point in space has
general euclidean coordinates (X,Y, Z)T , then the projection of this point is defined
by: X

Y
Z

→ f

(
X/Z
Y/Z

)
(10)

This operation was what we called “perspective projection” in section 2 (although
we scale by f here), and we showed that this operation has a nice, simple form if we use
homogeneous coordinates. The ability to use matrices to represent our camera models,
and also use them to chain together compositions of operations greatly simplifies the
notation in this subject. It is for this reason that we use homogeneous coordinates. In
homogeneous coordinates (10) becomes:

X
Y
Z
w

→
f 0 0 0

0 f 0 0
0 0 1 0



X
Y
Z
w

 (11)

In the above, we assumed that the camera was centered at the origin of the 3-D
coordinate frame, and was focused down the z-axis. In general, we may want to have
multiple cameras, with different poses1 at the same time. To facilitate this, we define two
distinct 3-D coordinate frames. The first is exactly the frame we used above, with origin
at the camera center, and oriented so that its z-axis is orthogonal to the image plane; this
is called the camera frame. The other frame will be called the world frame. A point in
this frame may be referred to as a world point, or we may say it is in world-coordinates.
In general, there may be an arbitrary rotation and translation required to move between

1 A cameras pose refers to the combination of its position and orientation in space.

A Tutorial On Camera Models 5

the camera frame and the world frame. With this abstraction, we can have multiple
cameras. There will always be a single world frame, and a different camera frame for
each camera.

It is convenient to be able to build the cameras pose into the camera model, so that
we can input a point in world coordinates, without having to worry about performing
coordinate transformations manually. So, lets assume that Xworld and Xcam are the ho-
mogeneous coordinates of a single point in the world and camera frames, respectively,
and that they are related by:

Xcam =

(
R C

0 0 0 1

)
Xworld (12)

Then, the function which maps a point in homogeneous world coordinates to image
coordinates is given by:

X
Y
Z
w

→
f 0 0 0

0 f 0 0
0 0 1 0

(R C
0 0 0 1

)
X
Y
Z
w

 (13)

We will use P to denote the camera projection operation. Then, we can write this
more simply as:

P (Xworld) = PXworld (14)

P =

f 0 0
0 f 0
0 0 1

(R C
)

(15)

The matrix P is called the cameras projection matrix. Notice that since the last
column of the first matrix in (13) is all 0’s, we were able to delete that column, and the
corresponding row in the matrix on the right.

3.2 Slight Generalizations of the Pinhole Camera

The camera model from section 3.1 captures the main idea behind perspective projec-
tion, but it made some simplifying assumptions which can be easily relaxed. The first is
that the two axes in the image plane are assumed to be identical. This may be problem-
atic. For instance, it is common for digital CCDs (the optical sensor in a digital camera)
to have non-square pixel elements. This effect is well-modeled by a pinhole camera
with two different focal lengths for the x and y camera axes. With this relaxation, the
camera projection matrix is:

P =

fx 0 0
0 fy 0
0 0 1

(R C
)

(16)

where fx and fy are the effective focal lengths for the x and y camera axes, respec-
tively. Additionally, we may wish to re-position the origin in the image plane (rather

6 Bryan Poling

than require it to be the intersection of the z-axis of the camera frame with the im-
age plane). To accomplish this, we simply translate image, following the perspective
projection. Our camera matrix becomes:

P =

1 0 x0
0 1 y0
0 0 1

fx 0 0
0 fy 0
0 0 1

(R C
)
=

fx 0 x0
0 fy y0
0 0 1

(R C
)

(17)

where (x0, y0)
T is the translation applied to the image after perspective projection.

Both of the generalizations applied to the pinhole camera model in this section can
be realized by using a standard pinhole camera model, and applying an appropriate
affine transformation to the resulting image.

3.3 The General Projective Camera

The camera models from sections 3.1 and 3.2 are both expressed as:

P (Xworld) = PXworld (18)

for an appropriate 3-by-4 matrix P. A general projective camera simply removes all
restrictions on the elements of this matrix. That is, the projective camera is defined as
follows [1]:

P(Xworld) =

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34

Xworld (19)

where each Tij is arbitrary. It should be noted that some still require that P be of
full rank (to ensure that the image of R3 fills the image plane) [2, p. 157].

4 Cameras Which Do Not Capture The Perspective Effect

The models seen so far are rather general, and all of them have the ability to capture
perspective. However, when imaging objects far away from a camera, small differences
in depth become less apparent. In this case perspective can often be ignored in a camera
model. We will explore a few models which ignore perspective; we will call these non-
perspective cameras. Of the non-perspective camera models in frequent use, the most
general model that the author is aware of is called the affine camera. Two others are the
orthographic camera and the weak perspective camera. The orthographic camera is the
simplest to understand, and we will see that the other two are just slight generalizations
of this model. We will therefor start with the orthographic camera and then proceed to
generalize it.

A Tutorial On Camera Models 7

4.1 The Orthographic Camera

In the orthographic camera model, the image of a world point is found by simply trans-
lating the world point parallel to the optical axis2 until it lands in the image plane. An
example of where this model is appropriate would be if one holds an object above the
ground at noon on a sunny day (so the sun is directly overhead) and views the shadow of
the object on the ground as the image of the object. Since the sun is so far away from us,
all of the light rays hitting the object are effectively parallel, resulting in the described
effect. In principal, if one were to move the object closer to, or farther away from the
ground, the shadow would not change in size. This demonstrates that no perspective
information survives the projection.

Image Plane

Points in

3-D Space

Fig. 3: Operation of projecting points into the image plane for an orthographic camera

To derive this cameras projection matrix, let R represent a 3-by-3 rotation matrix
and C represent a 3-by-1 euclidean vector s.t. if X is a euclidean vector in the world
coordinate frame, then X′ = RX+C gives the same vector, with euclidean represen-
tation, coordinatized in the camera frame.

Then, to map a point X (now with homogeneous representation in the world frame)
to its image point x (with homogeneous representation in the image plane), we first
express X in the camera frame, and then eliminate the z-component of the vector. This
is accomplished as follows:

x =

1 0 0 0
0 1 0 0
0 0 0 1

(R C
0 0 0 1

)
X (20)

This reduces to x = PX where:

P =

← R(1,:) → C1

← R(2,:) → C2

0 0 0 1

 (21)

4.2 The Weak Perspective Camera

One may notice that the orthographic camera does not allow any sort of “zooming”.
That is, we flatten out space through orthogonal projection, but we don’t dilate, or scale

2 The optical axis is in the direction orthogonal to the image plane

8 Bryan Poling

the result. The weak perspective camera is nothing more than an orthographic camera,
followed by a scaling of the resulting image. Notice that the scaling is applied after
orthogonal projection, which destroys all perspective information. Thus, the weak per-
spective camera is equally incapable of capturing perspective (its name may therefor
seem misleading - indeed if I were first naming this, I would probably have called it a
“scaled orthographic camera”; a name which is generally reserved for the case where
the scaling factor is the same in both the x and y directions [2, p. 171]).

Recall that if we want to effect an affine transformation in homogeneous coordi-
nates, this can be accomplished by left-multiplying by the appropriate matrix. In our
case, our desired transformation is simply scaling the x and y axes (lets say by α 6= 0
and β 6= 0, respectively). This can be applied by left multiplying by the following
matrix: α 0 0

0 β 0
0 0 1

 (22)

Then the camera projection matrix for a weak perspective camera becomes:

P =

← αR(1,:) → αC1

← βR(2,:) → βC2

0 0 0 1

 (23)

Frequently, it is convenient to use a weak perspective camera to approximate a pin-
hole perspective camera. As was mentioned before, for such an approximation to be
reasonable, we need to be imaging objects that are reasonably far away from the cam-
era. Specifically, we need the differences in depth of the imaged objects to be small,
compared to the average depth of all of the objects, Zave. When this assumption is sat-
isfied, we choose α so that an object at depth Zave appears to have the same size in the
image plane with both camera models.

If f is the focal length of the pinhole perspective camera we are trying to approxi-
mate, an object of unit size, at depth Zave, will appear to have size f/Zave in the image
plane. If we use orthographic projection instead, an object of unit size (regardless of
how far away it is) will have an image of unit size in the image plane. Thus, to make
our weak-perspective camera approximate the pinhole camera, we need to scale both
axes of the orthographic image by α = β = f/Zave. In this case, the camera projection
matrix is:

P =

← f/ZaveR(1,:) → f/ZaveC1

← f/ZaveR(2,:) → f/ZaveC2

0 0 0 1

 (24)

Since matrices for homogeneous vectors are scale invarient, this can be written
equivalently as:

P =

← R(1,:) → C1

← R(2,:) → C2

0 0 0 Zave/f

 (25)

A Tutorial On Camera Models 9

4.3 The Affine Camera

We constructed the weak perspective camera by starting with an orthogonal projection
and following it by a uniform scaling. The resulting camera model was non-perspective
because the first operation in its construction (orthogonal projection) destroyed all per-
spective information. It would seem then that we could construct other non-perspective
camera models by following orthogonal projection with more general transformations
than just scaling. This is indeed the case, and our final model, the affine camera, is
nothing more than orthogonal projection followed by an arbitrary affine transforma-
tion. This is the most general non-perspective camera model considered thus far. The
weak perspective camera is a special case of an affine camera, by restricting our affine
transformation to simple dilation. The orthogonal camera can similarly be viewed as a
special case of the weak perspective camera, where our scaling amount is restricted to
unity.

The affine camera is typically defined by the following map [1]:

x =

T11 T12 T13 T14
T21 T22 T23 T24
0 0 0 T34

X where each Tij is arbitrary. (26)

In this form it is not easy to see that this is an orthographic projection followed
by some affine transformation. To show this, we will assume we have been given a
matrix of the form in (26). We will consider an arbitrary composition of an orthogonal
projection, followed by an affine transformation, and show that we can design such
a composition to agree with the provided transformation. First, observe that since the
matrix in (26) is applied to homogeneous vectors, the matrix can be scaled by any
non-zero amount without changing the transformation. Hence, we loose nothing by
assuming our given matrix has T34 = 1. Our arbitrary composition looks like:

F (X) =

A11 A12 A13

A21 A22 A23

0 0 1

← R(1,:) → C1

← R(2,:) → C2

0 0 0 1

X (27)

Multiplying this out we get:

F (X) = BX (28)

where:

B =

A11R11 +A12R21 A11R12 +A12R22 A11R13 +A12R23 A11C1 +A12C2 +A13

A21R11 +A22R21 A21R12 +A22R22 A21R13 +A22R23 A21C1 +A22C2 +A23

0 0 0 1


Now we set:

B =

T11 T12 T13 T14

T21 T22 T23 T24

0 0 0 1



10 Bryan Poling

We see that to solve this equation, we must be able to solve Bij = Tij for i ∈ {1, 2},
j ∈ {1, 2, 3}. Then, we can choose A13 and A23 to make B14 = T14 and B24 = T24 (A13 and
A23 each appear in only one spot). Thus, we can solve this system of equations if the following
system has a solution: 

A11R11 +A12R21

A11R12 +A12R22

A11R13 +A12R23

A21R11 +A22R21

A21R12 +A22R22

A21R13 +A22R23

 =


T11

T12

T13

T21

T22

T23

 (29)

We define:

v1 =

R11

R12

R13

 v2 =

R21

R22

R23

 w1 =

T11

T12

T13

 w2 =

T21

T22

T23

 (30)

Here, w1 and w2 are made out of elements Tij , and so are not in our control. We do, however,
get to control the elements R, C, and Aij to make the above system hold. v1 and v2 are made up
of elements of R and so are values we get to control. We cannot, however, choose these vectors
however we like. They form two rows of R (a rotation matrix) and so must be chosen of unit
length, and orthogonal to each other. We now write (29) as:{

A11v1 +A12v2 = w1

A21v1 +A22v2 = w2

(31)

We can choose v1 and v2 by performing Gram-Schmidt3 on the given vectors w1 and w2.
Then, we choose A11, A12, A21, and A22 so that (31) holds. We can always do this because the
span of {v1,v2} and {w1,w2} will be the same.

Thus, the system (29) always has a solution, so we can always express an affine transforma-
tion, as defined in (26), as an orthogonal projection, followed by an appropriate affine transfor-
mation.

We have seen that the affine camera model generalizes both of the previous models in this
section. One could ask “why not generalize more?” Certainly we could apply general non-affine
transformations after orthogonal projection and derive even more general non-perspective cam-
eras. One can do this, but if we go to any greater level of generality we loose an important
property which holds for affine cameras. Namely, if we image two parallel lines in space using an
affine camera, then the images of these lines will also be parallel. This can be seen by looking at
our decomposition of the affine camera model above. Certainly, orthogonal projection preserves
parallelism. Then, we follow that up with an affine transformation. The affine transformation
can be decomposed into a translation and then a linear operation, both of which will preserve
parallelism.

References
1. Subhashis Banerjee, Camera models and affine multiple views geometry. 6, 9
2. R. I. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge Uni-

versity Press, ISBN: 0521623049, 2000. 6, 8

3 If one of w1 and w2 is a multiple of the other, choose v1 to be the normalized version of this
vector, and set v2 to be any unit vector orthogonal to v1.

