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Abstract

Vanishing points and vanishing lines are classical ge-

ometrical concepts in perspective cameras that have a lin-

eage dating back to 3 centuries. A vanishing point is a point

on the image plane where parallel lines in 3D space appear

to converge, whereas a vanishing line passes through 2 or

more vanishing points. While such concepts are simple and

intuitive in perspective cameras, their counterparts in cata-

dioptric cameras (obtained using mirrors and lenses) are

more involved. For example, lines in the 3D space map to

higher degree curves in catadioptric cameras. The projec-

tion of a set of 3D parallel lines converges on a single point

in perspective images, whereas they converge to more than

one point in catadioptric cameras. To the best of our knowl-

edge, we are not aware of any systematic development of

analytical models for vanishing points and vanishing curves

in different types of catadioptric cameras. In this paper,

we derive parametric equations for vanishing points and

vanishing curves using the calibration parameters, mirror

shape coefficients, and direction vectors of parallel lines in

3D space. We show compelling experimental results on van-

ishing point estimation and absolute pose estimation for a

wide range of catadioptric cameras in both simulations and

real experiments.

1. Introduction

The idea of vanishing points in catadioptric images is

definitely more involved than the classical and well-known

image of the point of convergence from parallel railroad

tracks. In Fig 1, we show two images of an urban scene cap-

tured using a spherical catadioptric camera (a pinhole cam-

era looking at a spherical mirror). We consider two sets of

parallel lines and their associated curves in the image space.

First, we do not think in terms of straight lines in catadiop-

tric images. Lines in the 3D space are projected to curves

in catadioptric images. Furthermore, unlike perspective im-

ages, each set of parallel lines converges at more than one

vanishing point. For example, in Fig. 1(a), the set of par-

allel lines projects as curves that intersect at two vanishing

(a) (b)

Figure 1: We illustrate vanishing points and vanishing

curves in a catadioptric camera. (a) and (b) show two im-

ages from a spherical catadioptric camera. In (a), the red

curves denote a set of parallel lines in 3D space, and the

two blue points where the red curves converge are the two

vanishing points. Similarly we show two other vanishing

points associated with a different set of parallel lines that

are denoted by green lines. In (b), we show a red vanishing

curve passing through two or more vanishing points.

points. In Fig. 1(b), we show a vanishing curve that passes

through more than one vanishing point. In other words,

we can think of vanishing curves as some sort of horizon

curves. These illustrated vanishing points and vanishing

curves can also be expressed in polynomial equations, i.e.,

expressed in parametric equations. The main contribution

of this paper is the analytical modeling of vanishing points

and vanishing curves for different classes of catadioptric

cameras (e.g., spherical, ellipsoidal, or hyperbolic mirrors).

In perspective cameras, vanishing points and vanishing

lines are classical concepts that were primarily used by

artists for drawings. However, these concepts are not just

artistic fascinations, and they have been used by many vi-

sion researchers for a wide variety of applications: camera

calibration [22, 23, 54, 57, 28], robot control [51, 49, 14],

3D reconstruction [44, 33, 24, 17, 48] and rotation estima-

tion [4, 35, 39, 25, 11, 21]. This paper focuses on catadiop-

tric cameras [42], which refers to a camera system where

a pinhole camera observes the world from the reflection
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on a mirror. While the theory we develop applies to dif-

ferent types of catadioptric cameras, fisheye cameras [18]

can also be parameterized by catadioptric camera models

[60, 40, 41]. In particular, our analysis applies to differ-

ent classes of omnidirectional cameras: central [8, 7, 30, 9],

axial, and non-central [53]. If the cameras satisfy certain

conditions and the mirrors belong to specific types (hyper-

bolic, ellipsoidal, and parabolic), we can achieve a central

model. In the case of a spherical mirror, one achieves an ax-

ial camera model where all the projection rays pass through

a single line in space.

Several methods exist for the extraction of vanishing

points without analytical modeling [54, 11, 38, 13, 12, 58,

5, 6, 34]. Vanishing curves are curves in the image that con-

tain a space of solutions for vanishing points, sharing some

properties. Similar to vanishing points, these curves have

several different applications in computer vision, such as:

camera calibration, motion control, geometric reasoning &

image segmentation, and attitude estimation (see for exam-

ple [56, 55, 43, 37, 52]). In this paper we derive paramet-

ric equations for modeling vanishing points and vanishing

curves in the case of general catadioptric cameras that can

be central, axial, or non-central. To the best of our knowl-

edge, we are not aware of any other work that achieves this.

When considering the estimation of vanishing points,

one needs to take into account the projection and fitting

of 3D lines into their images. Several authors studied this

problem in central perspective cameras. For central cata-

dioptric cameras, this was studied by [31, 10], in which

they parametrize the respective projection curve by a 2nd

degree curve. There have been a few results on the projec-

tion of lines for non-central catadioptric cameras: 1) in [2],

Agrawal et al. defined an analytical solution for the projec-

tion curve when considering spherical catadioptric cameras

(a 4th degree curve); and 2) in [15], Cameo et al. addressed

the projection and fitting of lines for cone catadioptric cam-

eras and the camera aligned with the camera’s axis of sym-

metry, in which they also achieved a 4th degree curve. There

are alternative solutions to the fitting without implicitly con-

sidering the projection of 3D lines, for example: local ap-

proximations in small windows by considering the general

linear camera approximations [27]; or by considering basis

functions and look-up tables [59].

While this paper studies the analytical models for van-

ishing points and vanishing curves, we can think of sim-

pler alternative solutions. For example, the easiest approach

would be to approximate the underlying catadioptric model

with a central one, correct the distortion, and treat the image

as a perspective one, on which one can use classical meth-

ods for vanishing point estimation. While this method may

work in practice, this approach is not theoretically correct

for most catadioptric cameras. A slightly different approach

is to reconstruct the 3D lines from 4 or more points on the

projected curves [19, 36, 20, 29, 16] in the non-central cam-

era. It is important to note that one can obtain the 3D re-

construction of a line from a single image in a non-central

camera. Once we reconstruct the parallel 3D lines in space,

we can compute the vanishing point from their intersection.

While this method is theoretically elegant, the approach is

too brittle in practice, as noticed in [32, 2, 3].

1.1. Problem Definition and Contributions

This paper addresses the parameterization of both van-

ishing points and vanishing curves, for general (central or

non-central) omnidirectional cameras. Our goal is to find

parameterization for both, using the following definitions:

Vanishing Points (Sec. 2): A common image point that is

the intersection of the projection of all parallel 3D

straight lines (i.e. point at the infinity) onto a camera’s

image, as shown in Fig. 1(a). It should, then, only de-

pend on the direction parameters of a 3D straight line.

Vanishing Curves (Sec. 3): The curve that includes van-

ishing points from straight lines perpendicular to some

3D plane in the world, as shown in Fig. 1(b).

We start by considering the projection of points on a 3D

straight line, and the case where this point is in the infin-

ity. With this approach, we are able to extract a polynomial

equation that represents vanishing points as a function of

the line’s direction. Then, we address the inverse problem,

i.e. computing lines’ direction for a given vanishing point.

After defining the vanishing points, we use that parameteri-

zation to define the vanishing curve.

In addition, to motivate the use of the proposed formu-

lations, we apply the proposed methods in the relative and

the absolute pose problems. The methods are evaluated and

validated using synthetic and real images.

1.2. Notations

In our derivation, we will introduce many intermediate

polynomial equations. Let κ
j
i r . s denote the ith polynomial

equation with degree j. We will consider a parametric point

on the surface of an axially symmetric quadric mirror (r P
R

3), which satisfies the following constraint:

Ω prq :“ r2
1

` r2
2

` Ar2
3

` Br3 ´ C “ 0, (1)

where A, B, and C are the mirror’s parameters. The normal

to the mirror at the point r is given by:

n “ rΩprq :“
“
r1 r2 Ar3 ` B{2

‰T
. (2)

To represent 3D lines, by default, we use the notation

that represent all points that belong to that line:

ppλq :“ λs ` q, where λ P R
`. (3)

Here q is a 3D point on the line and s is the direction vector.
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(a) (b)

Figure 2: We show the projection of a line in a catadioptric

image. The camera does not see the world directly, but ob-

serve it through the reflection using the mirror. (a) We show

the projection of a parameterized point on a line given by

ppλq :“ λs ` q. The point c and rpλq are the center of the

camera and the reflection point on the mirror, respectively.

The normal vector at the reflection point rpλq is given by

npλq. (b) We show the reflection plane that is defined by

the camera center (c), reflection point (rpλq) and the pa-

rameterized 3D point (ppλq).

2. Vanishing Points

This section addresses the parameterization of vanish-

ing points for general catadioptric camera systems (see

Fig. 1(a)). We observe the projection of a 3D line in space

on an image obtained through the reflection on a mirror.

Considering a calibrated camera, there is a unique corre-

spondence between a vanishing point on the image and its

associated reflection point on the mirror. We will derive a

parametric equation that relates reflection points on the mir-

ror, line direction vector, and camera parameters. The para-

metric equation is beneficial for at least 2 reasons. First, the

vanishing points can be estimated from the parametric equa-

tion by looking for the projection of points at the infinity on

the 3D lines. Additionally, we can also use the parametric

equation to extract the direction vector of the parallel lines

associated with given vanishing points.

2.1. Parameterization of Vanishing Points

We briefly provide the general approach and the con-

straints involved in the parameterization of vanishing

points, while the intermediate equations and coefficients

are only shown in the supplementary materials. Consider

Fig 2(a), a point on the line ppλq, its reflection point on

the mirror rpλq, and the perspective camera center c “
r0 c2 c3s1 define a plane Πpλq (denoted as reflection plane),

as shown in Fig. 2(b). Notice that p and r depend on the

depth λ of the point on the line, while c is fixed.

Another property of the reflection plane is that it must

be parallel to the normal vector, at the respective reflection

point. As a result, any point kpλq “ rpλq ` νnpλq, for any

1Notice that, since we are using an axially symmetric quadric mirror,

one can rotate the world coordinate system ensuring that c1 “ 0.

ν, belongs to the reflection plane. Let us consider rpλq ““
x y z

‰
. Setting ν “ ´1, we write:

kpλq P Πpλq “
“
0 0 z ´ Az ´ B{2

‰T
, (4)

which corresponds to the intersection of the reflection plane

Πpλq with the z–axis of the mirror (mirror’s axis of sym-

metry), as shown in Fig. 2(b). As a result and since

k, ppλq, rpλq, c P Πpλq, one can write:

det

ˆ„
rpλq kpλq c ppλq
1 1 1 1

⇢˙
“ 0, (5)

which can be expanded to:

`
κ1

1
rzsλ ` κ1

2
rzs

˘
x ` κ2

3
ry, zsλ ` κ2

4
ry, zs “ 0. (6)

Solving this equation as a function of x, we write:

x “ ´
κ2

3
ry, zsλ ` κ2

4
ry, zs

κ1

1
rzsλ ` κ1

2
rzs

. (7)

From its definition, vanishing points imply λ “ 8, in

(3). Then, using (7), we can derive a constraint:

x “ ´ lim
λÑ8

κ2

3
ry, zsλ ` κ2

4
ry, zs

κ1

1
rzsλ ` κ1

2
rzs

“ ´
κ2

3
ry, zs

κ1

1
rzs

, (8)

where

κ1

1
rzs “2s3c2 ´ 2s2c3 ´ Bs2 ` 2s2p1 ´ Aqz (9)

κ2

3
ry, zs “s1p2A ´ 2qyz ` s1pB ` 2c3qy ´ 2As1c2z

´ Bs1c2. (10)

From the previous equation, one can see that this constraint

only depends on the direction of the line (i.e. parameter s)

and the camera parameters.

Using Snell’s law of reflection, we have:

dpλq ˆ pppλq ´ rpλqq “ 0. (11)

We rewrite it as follows:

dpλq „ 4 }npλq} rdpλq ´ 8 npλqxrdpλq,npλqy, (12)

where rd is the reflected ray at the point r. To conclude, still

from Fig. 2(a), we define rd as:

rdpλq „ rpλq ´ c. (13)

Replacing (13) and (2) in (12), and this last one in (11), we

get three equations:

κ3

5
rx, y, z, λs “ 0, κ3

6
rx, y, z, λs “ 0, κ3

7
ry, z, λs “ 0.

(14)

2014



To ease the calculation and since they are linearly depen-

dent, we choose κ3

7
ry, z, λs. This one does not depend on

the x variable and is linear in λ. Then, one can extract λ as:

λ “ ´
κ3

8
ry, zs

κ3

9
ry, zs

. (15)

Again, from its definition, vanishing points imply

λ “ 8. This means that κ3

9
ry, zs in (15) must be equal

to zero. This equation only depends on the lines direction

(i.e. parameters s). Then, using (8), (15), and the mirrors

equation (1), one can compute vanishing points on the mir-

ror for a given direction s P R
3, by solving the system:

$
&
%

xκ1

1
rzs “ ´κ2

3
ry, zs

κ3

9
ry, zs “ 0

x2 ` y2 ` Az2 ` Bz ´ C “ 0,

(16)

where:

κ3

9
ry, zs “ a1y

2 ` a2yz
2 ` a3yz`

` a4y ` a5z
3 ` a6z

2 ` a7z ` a8. (17)

In the next subsection we present a method to solve this

system of equations.

2.2. Computing Vanishing Points from a Given Di-
rection

To compute the coordinates of a vanishing point on the
mirror r “

“
x y z

‰
, for a given direction, in this subsec-

tion we present a method to solve (16). We start by replac-
ing x in the first equation, using the mirror’s equation, and
squaring both sides of the equation:
"

κ4

10 ry, zs “ κ2

3 ry, zs2 ` py2 ` Az2 ` Bz ´ Cqκ1

1 rzs2 “ 0,

κ3

9 ry, zs “ 0

(18)

where:

κ4

10
ry, zs “ b1y

2z2 ` b2y
2z ` b3y

2 ` b4yz
2 ` b5yz`

` b6y ` b7z
4 ` b8z

3 ` b9z
2 ` b10z ` b11. (19)

Now, to solve this problem, since κ3

9
ry, zs has degree

two in y (see (17)), we solve this polynomial equation as

a function of y, which gives:

y “
κ2

11
rzs ˘

a
κ4

12
rzs

2a1
, (20)

By replacing it in (19), we obtain:

κ2

13
rzsκ4

12
rzs ` κ4

14
rzs ˘ κ2

15
rzs

b
κ4

12
rzs “ 0. (21)

After some simplifications, we write a 10th degree polyno-
mial equation as:

pκ2

13rzsκ4

12rzs ` κ
4

14rzsq2 ´ κ
2

15rzs2κ4

12rzs “ 0 ñ κ
10

16rzs “ 0.

(22)

Table 1: Degrees of the polynomial equation that can be

used to compute vanishing points, for specific catadioptric

camera systems. The * denotes the specific configurations

with analytical solutions, which are shown in the supple-

mentary material.

Mirror Type Degree of κ16rzs

General 10

General Axial (c2 “ 0) 8

Spherical Axial (A “ 1, B “ 0, c2 “ 0) 4

Ellipsoid Axial (A “ 0, C “ 0, c2 “ 0) 6

Conical Axial (B “ 0, C “ 0, c2 “ 0) 4 and z “ 0

Cylindrical Axial (A “ 0, B “ 0, c2 “ 0) 4

Central with Ellipsoidal Mirror 4*

Central with Hyperboloidal Mirror 4*

To compute the coordinates of the reflection of the vanish-

ing point, one has to compute the solution for z (the real

roots of κ10

16
rzs). Then, for each solution of z, we get the re-

spective y from (20), and x using the first equation of (16).

When considering specific types of camera positions

(e.g. axial catadioptric systems) and the use of specific

types of mirrors, the polynomial equation κ10

16
rzs becomes

simpler, in terms of its coefficients and its final polyno-

mial degree. Results for several types of configurations are

shown in Tab. 1. Furthermore, we observed that the use

of unified central model [30, 9] simplified the theory for

the central case. The projection of lines using the unified

central model [30, 9] is given by a 2nd degree polynomial,

which makes the relation between 3D lines and vanishing

points simpler. For this case, we derive a 4th degree polyno-

mial equation that relates a line’s direction with vanishing

points, which is shown in the supplementary material.

In the next subsection, we present an easy method to ex-

tract directions from vanishing points.

2.3. Getting Direction from Vanishing Points

Now, let us consider that we have a vanishing point given

by r “ rx, y, zs. This subsection addresses the estimation

the direction that yields the respective vanishing point. For

this purpose, we rewrite the system of (16) as a function of

s, which gives:

$
&
%

κ1

17
rs2, s3s “ a1s2 ` a2s3 “ 0

κ2

18
rs1, s2, s3s “ b1s

2

1
` b2s

2

2
` b3s2s3 ` b4s

2

3
“ 0

κ2

19
rs1, s2, s3s “ s2

1
` s2

2
` s2

3
´ 1 “ 0.

(23)

To get the direction from a given vanishing points, one

needs to solve the system of (23). First, we compute s3 from

κ1

17
rs2, s3s, and replace it in the second and third equations

of the system of (23), which gives:

$
&
%

b1s
2

1
`

´
b2 ´ b3

a1

a2

` b4
a2

1

a2

2

¯
s2
2

“ 0

s2
1

`
´
1 `

a2

1

a2

2

¯
s2
2

´ 1 “ 0.
(24)
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Through elimination, we obtain the solution for s2, as:

s2
2

“
´b1´

b2 ´ b3
a1

a2

` b4
a2

1

a2

2

´ b1 ´ b1
a2

1

a2

2

¯ (25)

To conclude, to obtain the coordinates of the direction

from the vanishing point r, one can compute s2 from (25),

obtain s3 “ ´a1s2
a2

, and s1 from s1 “ ˘
a
1 ´ s2

2
´ s2

3
.

3. Curves at the Infinity

A vanishing curve can be seen as a curve that contains all

possible vanishing points associated with a 3D ground plan

(a plan of parallel lines). In this section, we will derive an

equation to represent this curve in the mirror’s surface, as a

function of the vector that is normal to a 3D plane.

As presented in Sec. 1.1, vanishing curves are defined by

the set of vanishing points that result from directions per-

pendicular to some normal vector n. To start our deriva-

tions, we define s1 and s2 as the basis for the space of di-

rections perpendicular to n as:

s “ αs1 ` p1 ´ αqs2, (26)

such that sTn “ 0 for any α P R. For that purpose,

let us consider three possible solutions for s1 and s2, as

ts`, s´, s˚u:

s` “ n ˆ
“
1 0 0

‰
“

“
0 n3 ´n2

‰
(27)

s´ “ n ˆ
“
0 1 0

‰
“

“
´n3 0 n1

‰
(28)

s˚ “ n ˆ
“
0 0 1

‰
“

“
n2 ´n1 0

‰
. (29)

Each of the three vectors is either null or orthogonal to n,

with at least two nonzero ones. We associate to s1 and s2
the two vectors in the ts`, s´, s˚u with the highest norm.

Assuming that both s1 and s2 are defined as presented

above, we use the parameterization of the direction (26) in

the constraint (8). After some simplifications, one can de-

fine a 3D surface Γprq as:

Γprq :“ κ2

20
ry, zsx ` κ3

21
ry, zs “ 0, (30)

The coefficients for this polynomial are defined in the sup-

plementary material.

To conclude, one can define vanishing curves by the in-

tersection of Γprq with the quadric mirror, such that:

γprq :“
 
r “ rx, y, zs P R

3
: Γprq ^ Ωprq “ 0

(
. (31)

Supplementary material provides a method to solve (31).

4. Applications and Experimental Results

We performed experiments using simulation and real

data. We evaluate the proposed solutions: (1) the compu-

tation of vanishing points from a given direction; and (2)

(a) (b)

Figure 3: (a) Computation of vanishing points from line di-

rections (a). (b) Estimation of the direction from vanishing

points (b). We consider four different camera configurations

under different noise settings.

to recover the directions from vanishing points (Sec. 4.1).

We present a method to compute the camera’s pose using

vanishing points (Sec. 4.2) and present some information

regarding the projection of 3D lines onto the image. To

conclude, we exploit the relative pose problem (Sec. 4.3).

Real data was used to estimate both vanishing points and

vanishing curves. We show some results for the estimation

of the absolute camera pose (Sec. 4.4), modeling of central

and non-central systems (Sec 4.5), and for the parameteri-

zation of the vanishing curve (Sec. 4.6).

4.1. Evaluation of the Vanishing Points and the Di-
rection Estimation with Noise

In this subsection we evaluate the estimation of vanish-

ing points in the presence of noise in simulation data. For a

given direction sGT, we compute the ground truth vanishing

point rGT as described in Sec. 2.2. The effect of noise in

the data is simulated by changing the direction vector s by a

random angle. For that direction, we compute the vanishing

point r, and measure the distance error: δi “ }rGT ´ ri}.

This procedure is repeated varying the noise level from 0 to

5 degrees, and for each level of noise we consider 102 ran-

domly generated trials. Results for four different systems

are shown in Fig. 3(a). Although they vary significantly

for the considered configurations, the errors are (approxi-

mately) linearly with the noise for all of them. The con-

figurations that use ellipsoid and central hyperbolic mirrors

show betters results than the spherical and hyperbolic 2.

To evaluate the computation of a direction associated

with a given vanishing point, we: 1) obtain the vanishing

point for a given direction sGT, Sec. 2.1; 2) add noise to

the coordinates of the computed vanishing points (a normal

distribution with a variable standard deviation, denoted as

Noise Level and a mean of 0); 3) compute the direction

2Note that these results also depend on the camera position w.r.t. the

mirror, which we keep constant for all the experiments with the exception

of the hyperbolic central that requires a specific camera position.
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(a) (b)

Figure 4: Evaluation of the camera pose using vanishing

points, as a function of the noise level in the image. (a)

shows the results for the estimation of the rotation while, (b)

presents the results for the translation parameters. For that

purpose, we consider four different camera configurations

under different noise settings.

s, as shown in Sec. 2.3; and 4) measure the angle between

the estimated direction and the ground truth. This proce-

dure is repeated 102 times for each level of noise (from 0 to

10 pixels), and the results are shown in Fig. 3(b). Similar

to what happens in the results presented in Fig. 3(a), in this

case the errors also vary linearly with the noise for all of the

configurations, with configurations with hyperbolic central

and ellipsoidal mirrors performing worse than the rest.

4.2. Camera Pose

This subsection addresses the estimation of the absolute

camera pose, from two or more vanishing points.

4.2.1 Estimation of the Rotation Parameters

From the results presented above, using N • 2 vanishing

points, we can recover N different directions ts1, . . . , sNu.

Knowing these directions in the world coordinate system

(let us denote these as tqs1, . . . ,qsNu), we use the orthogo-

nal Procrustes’ problem [50] to compute the rotation R P
SOp3q that aligns camera and world coordinate systems.

To evaluate the estimation of the rotation parameters

in an absolute camera pose application, we consider the

following procedure: 1) we selected three random direc-

tions in the world; 2) apply a ground truth rotation RGT P
SOp3q to these directions; 3) compute the respective van-

ishing points; 4) add noise to the vanishing points using

the variable Noise Level (similar to what was done in

Sec. 4.1); 5) compute the 3D direction from the noisy van-

ishing points; 6) compute the rotation R using the Pro-

crustes’ problem; and 7) compute the error in the estima-

tion of the rotation matrix by αErr “ }RGT ´ R}Frob. We

repeat this procedure 102 for each level of noise for four dif-

ferent configurations. Results for this evaluation are shown

in Fig. 4(a). The errors in the estimation of the rotation

matrix vary linearly with the noise in the image, and the

behaviour in terms of camera configuration is similar to the

one in Fig. 3(b) (which makes sense because the rotation es-

timation depends on the method used to get directions from

vanishing points).

We note that this method can be applied to N “ 2, by

considering qs3 “ qs1 ˆ qs2. An example of the rotation esti-

mation using only two vanishing points is shown below.

4.2.2 Estimation of the Translation Parameters

For the estimation of the pose’s translation parameters

t P R
3, one needs to use more information than vanish-

ing points. In this subsection, we show a technique that,

based on previously estimated rotation parameters (which

was computed from Sec. 4.2.1) and with knowledge of the

coordinates of (at least) three image points that are images

of two 3D straight lines3, is able to compute the camera’s

translation parameters.

To simplify the notation, let us now represent the 3D

lines using Plücker coordinates [47], by qli P R
6 “

pqsi, qmiq, for i “ 1, . . . , N , where qmi “ qqi ˆ qsi. Now,

for a set of pixels that are images of these 3D straight lines,

one can map them into 3D straight lines (inverse projection

map) li,j P R
6 “ psi,j , mi,jq, where j “ 1, . . . ,Mi and

Mi represents the number of points that are images of the

ith line. Using the results of [46], one can write:

xrtsxRqsi, siy ` xRqsi,miy ` xR qmi, siy “ 0. (32)

Since R is known, after some calculations, one can rewrite

this constraint as: aTi,jt “ bi,j
4. Stacking ai,j and bi,j for a

set of ti, ju, one can compute the translation parameters as:

At “ b ñ t “ A:b, (33)

where A: represents the pseudo inverse of A.

To evaluate this approach, we consider the same data-set

presented in the previous subsection and define pixels that

are images of two 3D lines. After obtaining R, we apply the

method presented in this subsection. Noise was included in

both the vanishing points and the pixels that are images of

3D lines (normal distribution with the standard deviation

equals to the Noise Level variable). Results are shown

in Fig. 4(b)5. From these results, with the exception of the

central hyperbolic mirror (in which the results deteriorate

significantly with the noise), the behaviour is very similar

to what happens in the previous evaluation.

3The minimal case corresponds to two image points belonging to a 3D

line and one more image point in another 3D line.
4The elements of ai,j and bi, can be easily obtained after some sym-

bolic computation.
5In these tests, we consider image pixels from two 3D straight lines. If

more 3D lines were considered, we would have a more robust estimation.
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Figure 5: Images used to get the camera orientation from a

sequence of two images. Curves are fitted using the yellow

and magenta pixels (with a noise standard deviation of three

pixels), and we match projection curves from parallel lines

using the same colors in both images. We compute vanish-

ing points from the intersection of the curves (blue points in

both images), and get the correspondent directions. Then,

the rotation is computed using the Procrustes problem.

4.3. Relative Rotation in a Simulated Environment

This subsection address the estimation of the rotation pa-

rameters, in a relative pose problem. This problem can be

solved using vanishing points and a method similar to what

was proposed in Sec. 4.2.1, assuming as known a matching

of N • 2 vanishing points in a couple of images. To gen-

erate these images, we use POV-Ray [1]. A non-central

ellipsoidal catadioptric camera system was simulated in an

urban environment. We acquire images from two distinct

points of view (as shown in Fig. 5).

To estimate rotation we consider the following proce-

dure: 1) we fit parallel curves on both images considering

noise in the image points of two pixels (standard deviation),

see the yellow and pink points in Fig. 5; 2) compute corre-

sponding vanishing points in both images; 3) compute di-

rections using the method presented in Sec. 2.3; and 4) esti-

mate the rotation that aligns both camera coordinate system

using the Procrustes’ problem. The difference between the

estimated rotation matrix and the ground truth was: 0.0446,

which agrees with the evaluation shown in Sec. 4.2.1.

Fitting curves in non-central catadioptric cameras in-

volves the estimation of the coefficients of high degree poly-

nomial equations, which are hard to recover robustly. In

this paper, we consider the following procedure: 1) find an

initial estimate (non-robust solution) to the 3D parameters

using one of the state-of-the-art techniques; 2) fit the curves

in the mirror; 3) compute the distance between the curves

and the pixels that were supposed to be on the associated

lines; 4) update the 3D line parameters and iterate these 4

steps till the distance is less than a threshold.

(a) Spherical catadioptric camera configuration.

(b) Hyperbolic catadioptric camera configuration.

Figure 6: Application of the proposed solution for the ab-

solute pose problem, using both hyperbolic and spherical

mirrors. On the left we show the fitting of curves in the

image (using the colored points on the chessboard). Then,

we compute vanishing points from the intersection of the

curves with the same color, the respective directions from

vanishing points, and the rotation and translation parame-

ters. To validate the camera pose, we define a square on

the chessboard (3D world) and project it on the image. The

cube is drawn in the correct position (image space), which

validates the computation of the camera pose.

4.4. Absolute Pose using Real Data

We consider two real non-central catadioptric camera

systems using a spherical and a hyperbolic mirror. The per-

spective cameras were calibrated using the Matlab tool-

box and we used the mirror parameters specified by the

manufacturer. The transformation between the mirror and

perspective cameras was computed using [45].

We captured chessboard images and used their corners

to compute parallel lines. We consider two scenarios, one

of them in which each chessboard is used to find vanish-

ing points from a basis of the world coordinate system; and

one with a single chessboard, in which we can identify two

vanishing points that are two perpendicular directions in the

world (i.e. the minimal case). In addition, we assume that

the measurements of one of the chessboards is known, i.e.

we know the coordinates of some 3D line on that chessboard

and their correspondent images (pixels). We fit lines using

the method presented in the previous subsection, and com-

pute the respective vanishing points, see the results in Fig. 6.

Then, we compute the pose using the method described in

Sec. 4.2. After that, we define a cube in the chessboard co-
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(a) (b)

Figure 7: Comparison between the vanishing points using

our method (red curves and blue points), and the approx-

imation using the unified central model (green curves and

yellow points). We show examples of POV-Ray (a) (to get

a central omnidirectional camera) and real images (b), in

which the camera is about 9% away from the central con-

figuration. Regarding (b) we got a deviation of 17˝ between

our exact direction and the one given by the unified model.

ordinates system, and project its wireframe into the image

using [3, 26]. Fig. 6 proves the pose was computed cor-

rectly.

4.5. Modeling Central and Non-Central Solutions

We compare the vanishing points using the general ap-

proach with the one using central unified model (presented

in the supplementary material). As expected, in the central

case, the general approach gets the same solution as the uni-

fied model, as shown in Fig. 7(a). In Fig. 7(b) we test a non-

central configuration with a hyperbolic mirror (the camera

is about 9% away from the central configuration). We ap-

proximate the camera using the unified camera model, and

plot the solutions using the derived fourth degree polyno-

mial, drawing also the results based on the general theory

derived in this paper. The considerable improvement shown

by the general approach over the central unified model as-

serts that our theory for general catadioptric cameras is es-

sential for accurate modeling in non-central cameras.

4.6. Vanishing Curves

We show vanishing curve estimation using a non-central

hyperbolic catadioptric camera. For that purpose, we con-

sider a camera system used in the previous experiments, and

took a picture outside, where the horizon line was visible.

We specifically choose a camera position almost perpendic-

ular to the ground floor (n “ r0.05 0.05 0.997s), which al-

lows us to extract directly the parameterization of the curve

as derived in Sec. 3. The results are shown in Fig. 8, in

which we show the intersection of both surfaces (Γprq and

Ωprq), and the resulting curve in the image. Qualitative val-

idation of the vanishing curve estimation is achieved from

the precise alignment of the curve with the horizon.

Figure 8: An image was taken from the top of a building.

We measure the rotation of the camera w.r.t. the ground

plane, and use this information to define its normal vector.

With this vector, we apply the method derived in Sec. 3 and

draw the curve (in red) in the image that can be used for

partitioning it in to two distinct regions, namely the ground

and the sky. At the left, we show the intersection of both

surfaces that define the curve: 1) Γprq in red; 2) and Ωprq
gray surface representing the mirror.

5. Discussion

We propose analytical modeling of vanishing points and

vanishing curves in general omnidirectional cameras. To

the best of our knowledge, there is no prior work on para-

metric modeling of vanishing points and vanishing curves

for a taxonomy of catadioptric cameras. We propose so-

lutions for vanishing point estimation from line directions,

and line direction estimation from vanishing points. The

proposed methods differ in terms of computational com-

plexity. The computation of a vanishing point given a di-

rection of a 3D line consists in solving for the roots of one

polynomial of degree at most 10 and two back substitutions,

as presented in Sec. 2.2. The problem of computing a direc-

tion from a vanishing point corresponds to three polynomial

evaluations described in Sec. 2.3, which can be computed

analytically. The proposed methods are evaluated in both

simulations with noise and real data. In future, we plan to

use the estimated vanishing points and vanishing curves in

the context of large-scale line-based 3D modeling of Man-

hattan scenes using catadioptric cameras.
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