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1 Introduction

In the previous lecture notes, we discussed how we can transform points
from the real, 3D world into digital images using the extrinsic and intrinsic
properties of cameras. We looked at how we can use known structure in a
calibration rig and its corresponding image to deduce these camera proper-
ties. This time, we will look at a related problem: can we recover known
structure of the 3D world if we have a single image and know the properties
of the camera that took the image? We will then more generally discuss what
information can be deduced from a single image.

2 Transformations in 2D

To better understand how we can learn from images, we should be able to
first know about the various transformations in 2D space.

Isometric transformations are transformations that preserve distances.
In its most basic form, an isometry can be described as a rotation R and
translation t. Therefore, mathematically, they are defined asx′y′
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where

[
x′ y′ 1

]T
is the point achieved after the isometric transformation.

Similarity transformations are transformations that preserve shape.
Intuitively, they can do everything that isometric transformations can plus
scaling. Mathematically, they are denoted asx′y′
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Since they preserve shapes, they also preserve ratio of lengths and angles.
Note that every isometric transformation is a specific form of a similarity
transformation when s = 1. The converse does not hold true however.

Affine transformations are transformations that preserve points, straight
lines, and parallelism. For some vector v, an affine transformation T is de-
fined as

T (v) = Av + t

where A is a linear transformation of Rn. In homogeneous coordinates, affine
transformations are often written asx′y′
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From the above equation, it is easy to see that all similarities (and thus
isometries) are a specific case of affinities.

Projective transformations or homographies are any transforma-
tions that maps lines to lines, but does not necessarily preserve parallelism.
In homogeneous coordinates, projective transformations are represented asx′y′

1

 =

[
A t
v b

]xy
1


We see that the form is a further generalization of affine transformations, as
extra degrees of freedom are added with the addition of v.

Despite not preserving parallelism, projective transformations does pre-
serve collinearity of points, as it maps lines to lines. Furthermore, we prove
that the cross ratio of four collinear points remains invariant under projective
transformations. The cross ratio takes four points P1, P2, P3, P4 on a line and
computes

cross ratio =
‖P3 − P1‖‖P4 − P2‖
‖P3 − P2‖‖P4 − P1‖

(1)

We leave proving the invariance of the cross ratio under projective transfor-
mation as a class exercise.

3 Points and Lines at Infinity

Lines are important for determining structure in images, so knowing their
definitions in both 2D and 3D is essential. A line in 2D can be represented

with the homogeneous vector ` =
[
a b c

]T
. The ratio −a

b
captures the
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slope of the line and the ratio − c
b

captures the y-intercept. Formally, 2D
lines are defined by:

∀p =

[
x
y

]
∈ `,

[
a b c

] xy
1

 = 0 (2)

In general, two lines ` and `′ will intersect at a point x. This point is
defined as the cross product between ` and `′.

Proof. Given two intersecting lines ` and `′, the intersection point x should
lie on both lines ` and `′. Therefore, xT ` = 0 and xT `′ = 0. If we set
x = ` × `′, then by definition of cross product, the vector x is orthogonal
to both vectors ` and `′. By the definition of orthogonality, xT ` = 0 and
xT `′ = 0. Thus, this definition of x satisfies the constraints.

What about the case of parallel lines? Everyday knowledge expects these
lines to never intersect. However, this definition could be rewritten to say
that these lines intersect at infinity. In homogeneous coordinates, a point

at infinity is written as
[
x y 0

]T
. Recall the Euclidean coordinates are

gathered by dividing all coordinates by the last coordinate. In this case,
the coordinate is zero, achieving a point at infinity. Therefore, homogeneous
coordinates give a good formulation of determining intersections, even in
cases of parallel lines.

Now, let’s consider two parallel lines ` and `′. When two lines are parallel,
their slope is equal and thus a

b
= a′

b′
. If we compute the point of intersection

using homogenoous coordinates, then we verify that

`× `′ ∝

 b
−a
0

 = x∞ (3)

Thus, we confirmed our intuition that two parallel lines intersect at in-
finity. The point of intersection at infinity of two parallel lines is also called
an ideal point. One interesting property of a point at infinity is that all
parallel lines with the same slope −a

b
pass through the ideal point as shown

below:

`Tx∞ =
[
a b c

]  b
−a
0

 = 0 (4)

The concept of points of infinity can be extended to define lines at in-
finity. Consider two or more pairs of parallel lines. Each pair of parallel
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Figure 1: Points at infinity form lines at infinity.

lines intersects at a point at infinity {x∞,1, ..., x∞,n}.The line `∞ that passes
through all these points at infinity must satisfy ∀i, `T∞x∞,i = 0. This means

that `∞ =
[
0 0 c

]T
. Since c is an arbitrary value, we can simple define

`∞ =
[
0 0 1

]T
.

If we apply a generic projective transformation H to a point at infinity
p∞, what will happen?

p′ = Hp∞ =

[
A t
v b

]1
1
0

 =

p′xp′y
p′z

 (5)

Notice that the last element of p′ may become non-zero, which suggests
that a projective transformation generally maps points at infinity to points
that are no longer at infinity. However, this is not the case for affine trans-
formations, which map points at infinity to points at infinity:

p′ = Hp∞ =

[
A t
0 1

]1
1
0

 =

p′xp′y
0

 (6)

Now let’s apply a projective transformation H to a line ` to get a new line
`′. All points x that pass through a line must satisfy the property xT ` = 0.
In the transformed space, we know that lines still map to lines, which means
that x′`′ = 0. We can use the identity property to get

xT I` = xTHTH−T ` = 0
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If we apply a projective transformation to the line, then all the points be-
come transformed as well, giving x′ = Hx. Thus we get xTHTH−T ` = x′T `′,
and we find the projective transformation of a line is `′ = H−T `. Simi-
lar to our observations with points at infinity, we find that the projective
transformation of a line at infinity does not necessarily map to another line
at infinity. Additionally, affine transformations still map lines at infinity to
lines at infinity.

4 Vanishing Points and Lines

So far, we have introduced the concepts of lines and points at infinity in 2D.
Let us now introduce the equivalent concepts for 3D in its corresponding
homogeneous coordinates.

In the 3D world, we are now introduced to the concepts of planes. We

can represent a plane as a vector
[
a b c d

]T
, where (a, b, c) form a normal

vector and d is the distance from the origin to the plane in that normal
vector’s direction. Formally, a plane is defined as all the points x which
satisfy

xT


a
b
c
d

 = ax1 + bx2 + cx3 + d = 0 (7)

Lines in 3D are defined as the intersection of two planes. Since they have
four degrees of freedom (a defined intercept location and slopes in each of the
three dimensions), they are difficult to represent nicely in 3D space. Please
see Section 3.2.2 of the Hartley & Zisserman textbook for more details.

Points, however, are defined similarly in 3D as they are in 2D. Points
at infinity in 3D are again defined as the intersection point of parallel lines
in 3D. Furthermore, if we apply a projective transformation to one of these
points at infinity x∞, then we obtain a point p∞ in the image plane, which
is no longer at infinity in homogeneous coordinates. This point p∞ is known
as a vanishing point. But, what can we do with vanishing points?

We can derive a useful relationship between parallel lines in 3D, their cor-
responding vanishing point in the image, and the camera parameters K,R, T .
Let us define d = (a, b, c) as the direction of a set of 3D parallel lines in the
camera reference system. These lines intersect to a point at infinity and the
projection of such a point in the image returns the vanishing point v, which
is defined by

v = Kd (8)
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We leave the derivation of the above equation as an exercise. This equation
can be rewritten to extract the direction d:

d =
K−1v

‖K−1v‖
(9)

If we consider a plane Π as a superset of parallel lines, each set of parallel
lines intersects at a point at infinity. The line that passes through such set of
points at infinity is the line at infinity `∞ associated to Π. A line at infinity
is also defined as the line where two parallel planes intersect. The projective
transformation of `∞ to the image plane is no longer a line at infinity and is
called the vanishing line or the horizon line `horiz. The horizon line is a line
that passes through the corresponding vanishing points in the image. The
horizon line can be computed as

`horiz = H−TP `∞ (10)

Figure 2: The computed horizon line from a set of vanishing points.

The concept of a horizon line allows us to answer as humans to intuitively
deduce properties about the image that may not be easily apparent math-
ematically. For example, in Figure 2, although the lines on the ground are
not parallel in image coordinates, we have a natural understanding that they
are parallel in the 3D world.

Furthermore, the horizon line allows us to compute useful properties
about the world. For example, we can derive an interesting relationship
between the the normal n of a plane in 3D with the corresponding horizon
line `horiz in an image:

n = KT `horiz (11)

This means that if we can recognize the horizon line associated with a plane,
and if our camera is calibrated, then we can estimate the orientation of that
plane. Before introducing the last property that relates vanishing points and
lines, we first need to define the plane at infinity Π∞. This plane is defined by
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Figure 3: A set of two or more vanishing lines (the blue lines) defines the
plane at infinity Π∞ (the yellow plane).

Figure 4: Deriving the angle between two lines.

a set of 2 or more vanishing lines and is described by the vector
[
0 0 0 1

]T
in homogeneous coordinates.

The last property we introduce relates lines and planes in 3D with the
corresponding vanishing points and lines in the image plane. Suppose that
two pairs of parallel lines in 3D have directions d1 and d2, and are associated
with the points at infinity x1,∞ and x2,∞. Let v1 and v2 be the corresponding
vanishing points. Then, we find that the angle θ between d1 and d2 is given
by using the cosine rule:

cos θ =
d1 · d2
‖d1‖‖d2‖

=
vT1 ωv2√

vT1 ωv1
√
vT2 ωv2

(12)

where ω = (KKT )−1.
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We can extend this idea further to the 3D planar case, in which we want
to relate different planes in 3D. Recall that for any plane, we can compute
its associated vanishing line `horiz and its normal KT `horiz. Therefore, we can
determine the angle θ between two planes by computing the angle between
each of the planes’ normal vectors n1 and n2. We derive the angle θ between
two planes with a vanishing lines `1 and `2 respectively:

cos θ =
n1 · n2

‖n1‖‖n2‖

=
`T1 ω

−1`2√
`T1 ω

−1`1
√
`T2 ω

−1`2

(13)

5 A Single View Metrology Example

Figure 5: The example setup with two vanishing points for a pair of perpen-
dicular planes.

Suppose that we can identify two planes in an image of the 3D world.
Additionally, let’s suppose that we can identify a pair of parallel lines on
each of these planes. This allows us to estimate two vanishing points v1
and v2 in the image. Finally, let’s suppose that we know that these planes
are perpendicular in 3D. In this case, we know that from Equation 12, that
v1ωv2 = 0.

But recall that ω depends on the camera matrix K, which is potentially
unknown at this time. Therefore, is knowing these two vanishing points
sufficient for accurately estimating the camera parameters? Considering that
K has 5 degrees of freedom and that v1ωv2 = 0 provides only one constraint,
we do not have enough information to calculateK. What if we are able to find
another vanishing v3 for another mutually orthogonal plane? Then we know
that v1ωv2 = v1ωv3 = v2ωv3 = 0. Since each pair gives a constraint, we only
end up with 3 out of the 5 constraints needed to compute K. However, if we
make the assumption that the camera has zero-skew and square pixels, then
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Figure 6: The example setup with three vanishing points for a set of mutually
perpendicular planes.

we can add the additional two constraints needed. By these assumptions,
then we know that ω takes on the form

ω =

ω1 0 ω4

0 ω1 ω5

ω4 ω5 ω6

 (14)

If you noticed carefully, there are four variables in the definition of ω.
However, we can only know ω up to scale, which reduces the amount of
actual variables to three, allowing it to be solved. Once we have ω, then we
can use Cholesky decomposition to compute K. Thus, we have managed to
calibrate the camera using a single image!

Once K is known, then we can reconstruct the 3D geometry of the scene.
For example, we can compute the orientation of all the planes identified
above. Therefore, a single image can be readily used to uncover a wealth of
information about the scene it captures.
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