

$$
\begin{gathered}
z\left[\begin{array}{c}
u_{\text {img }} \\
v_{\text {img }} \\
1
\end{array}\right]=\left[\begin{array}{lll}
f_{x} & s & p_{x} \\
& f_{x} & p_{y} \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \\
\mathbf{x} \quad \mathbf{K} \quad \mathbf{R} \in \mathbb{R}^{3 \times 3} \\
\mathbf{t}
\end{gathered} \mathbf{X}
$$

http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-the-same-direction-as-the-lines-in-order-to-find-their-vanishingpoint.html

http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-the-same-direction-as-the-lines-in-order-to-find-their-vanishingpoint.html

http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-the-same-direction-as-the-lines-in-order-to-find-their-vanishingpoint.html

http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-the-same-direction-as-the-lines-in-order-to-find-their-vanishingpoint.html

Z direction in the world coordinate system

Columns of the rotation matrix represent vanishing points of world axes.

$$
z \underline{\mathbf{v}_{z}}=K\left[\left.\begin{array}{ll|l}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array} \right\rvert\, \mathbf{t}\right] \underline{\mathbf{z}_{\infty}}
$$

z vanishing point
z point at infinity

$$
-\frac{\mathbf{Z}_{\infty}=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\top}}{z \text { point at infinity }}
$$

Z direction in the world coordinate system

$\mathbf{R}=\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}\end{array}\right] \in S O(3)$

Columns of the rotation matrix represent vanishing points of world axes. $z \mathbf{v}_{z}=\mathbf{K}\left[\begin{array}{lll|l}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{t}\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$

Columns of the rotation matrix represent vanishing points of world axes.

$$
\begin{aligned}
z \mathbf{v}_{z} & =\mathbf{K r}_{3} \\
\mathbf{r}_{3} & =\mathbf{K}^{-1} \mathbf{v}_{z} /\left\|\mathbf{K}^{-1} \mathbf{v}_{z}\right\|
\end{aligned}
$$

$$
\therefore \frac{z_{\infty}=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\top}}{z \text { point at infinity }}
$$

Z direction in the world coordinate system

Geometric interpretation

$$
\mathbf{Z}_{\infty}=\frac{\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\top}}{z \text { point at infinity }}
$$

Z direction in the world coordinate system

Geometric interpretation

$$
\mathbf{z}_{\infty}=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\top}
$$

Z direction in the world coordinate system

Geometric interpretation

Case 2: Using two vanishing points

$$
\text { - } \mathbf{z}_{\infty}=\frac{\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]^{\top}}{z \text { point at infinity }}
$$

$\mathbf{X}_{\infty}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{\top} \times$ point at infinity

- X direction in the world coordinate system
Z direction in the world coordinate system

Columns of the rotation matrix represent vanishing points of world axes.

$$
\begin{aligned}
& \mathbf{r}_{3}=\mathbf{K}^{-1} z \mathbf{v}_{z} \\
& \mathbf{r}_{1}=\mathbf{K}^{-1} z \mathbf{v}_{x} \\
& \mathbf{r}_{2}=\mathbf{r}_{3} \times \mathbf{r}_{1} \\
& \hline \text { Orthogonal rotation matrix }
\end{aligned}
$$

Exercise I

$$
\mathbf{r}_{1}=\mathbf{K}^{-1} z \mathbf{v}_{x}
$$

$$
\mathbf{r}_{2}=\mathbf{K}^{-1} z \mathbf{v}_{y}
$$

$$
\mathbf{R}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{1} \times \mathbf{r}_{2}
\end{array}\right]
$$

Exercise II

Exercise II

$\mathbf{r}_{1}=\mathbf{K}^{-1} \mathbf{v}_{x} /\left\|\mathbf{K}^{-1} \mathbf{v}_{x}\right\|$
$\underline{\mathbf{r}_{2}=\mathbf{K}^{-1} \mathbf{v}_{y} /\left\|\mathbf{K}^{-1} \mathbf{v}_{y}\right\|}$
Scale normalization

Exercise II

Exercise II

Estimate pan/tilt from \mathbf{r}_{3}.

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\mathbf{r}_{3}(1) / \mathbf{r}_{3}(3)\right) \\
\beta & =\sin ^{-1} \mathbf{r}_{3}(2) \\
\alpha & =-0.6691=-0.2130 \pi \\
\beta & =-0.2706=-0.0861 \pi
\end{aligned}
$$

$$
R=\left(\begin{array}{ccc}
0.8017 & 0.0067 & -0.5977 \\
-0.2086 & 0.9411 & -0.2673 \\
0.5602 & 0.3382 & 0.7558
\end{array}\right)
$$

Exercise II

Pan angle α
Tilt angle β

Planar world

$$
\cdot \mathbf{x}=\left[\begin{array}{llll}
X & Y & 0 & 1
\end{array}\right]
$$

$$
\mathbf{m}=\left[\begin{array}{lll}
u & v & 1
\end{array}\right]^{\top}
$$

$$
P=\left[\begin{array}{ll}
\mathrm{R} & \mathrm{t}
\end{array}\right]
$$

$$
\begin{aligned}
& z \mathbf{m}=K\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \mid \boldsymbol{t}
\end{array}\right] \mathbf{X} \\
& =\mathbf{K}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \mid \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
0 \\
1
\end{array}\right]=\underbrace{\mathbf{K}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]}_{2 \mathrm{D} \text { homography }}
\end{aligned}
$$

Planar world

- $\mathbf{x}=\left[\begin{array}{llll}x & Y & 0 & 1\end{array}\right]$

$P=\left[\begin{array}{ll}\mathrm{R} & \mathrm{t}\end{array}\right]$

Exercise

$\mathbf{H}=\mathbf{K}^{-} \tilde{\mathbf{H}}=\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}\end{array}\right]$ Note that $\left\|\mathbf{r}_{1}\right\|=\left\|\boldsymbol{r}_{2}\right\|=1$

Exercise

Homography from four points:
$H=\left(\begin{array}{ccc}0.4430 & 0.0037 & -0.1071 \\ -0.1153 & 0.5216 & 0.1506 \\ 0.3096 & 0.1875 & 0.5944\end{array}\right)$

$$
\begin{aligned}
a & =\left\|\left(H_{11}, H_{21}, H_{31}\right)\right\|: \text { Normalization factor } \\
t & =H(:, 3) / a=(-0.1937,0.2726,1.0756)^{T} \\
r_{1} & =H(:, 1) / a=(0.8017,-0.2086,0.5602)^{T} \\
r_{2} & =H(:, 2) / a=(0.0067,0.9439,0.3392)^{T}
\end{aligned}
$$

Exercise

Homography from four points:
$H=\left(\begin{array}{ccc}0.4430 & 0.0037 & -0.1071 \\ -0.1153 & 0.5216 & 0.1506 \\ 0.3096 & 0.1875 & 0.5944\end{array}\right)$

$$
\begin{aligned}
a & =\left\|\left(H_{11}, H_{21}, H_{31}\right)\right\|: \text { Normalization factor } \\
t & =H(:, 3) / a=(-0.1937,0.2726,1.0756)^{T} \\
r_{1} & =H(:, 1) / a=(0.8017,-0.2086,0.5602)^{T} \\
r_{2} & =H(:, 2) / a=(0.0067,0.9439,0.3392)^{T} \\
r_{3} & =r_{1} \times r_{2}=(-0.1937,0.2726,1.0756)^{T}
\end{aligned}
$$

How to estimate the rotation and translation of the robot from the world point of view?

In the case of moving robot(rather than moving target), we need to know the orientation/position of the robot in the world ==>
we need to how to pan/tilt the world oriented to the robot.

Note: pan/tilt of the camera is very different from the pan/tilt of the world!

Third person (world) perspective

$$
P=K[R \mid t]
$$

First person perspective

$$
\mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}]
$$

Coordinate transform from $\{W\}$ to $\left\{C^{\prime}\right\}$

$$
\mathbf{X}_{C^{\prime}}=\mathbf{R} \mathbf{X}_{w}
$$

First person perspective

First person perspective

First person perspective

Third person (world) perspective

Third person (world) perspective

Camera center seen from world coordinate system

