RANSAC: Random Sample Consensus

Linear Homogeneous Equations

Linear least square solve produces a trivial solution:

$$
x=\left(A^{\top} A\right)^{-1} A^{\top} b \rightarrow x=0
$$

An additional constraint on \mathbf{X} to avoid the trivial solution: $\|\mathbf{x}\|=1$

1) $\operatorname{rank}(\mathbf{A})=r<n-1$: infinite number of solutions

$$
\mathbf{X}=\lambda_{r+1} \mathbf{V}_{r+1}+\cdots+\lambda_{n} \mathbf{V}_{n} \quad \text { where } \sum_{i=r+1}^{n} \lambda_{i}^{2}=1
$$

2) $\operatorname{rank}(A)=n-1 \quad$: one exact solution

$$
\mathbf{x}=\mathbf{V}_{n}
$$

3) $n<m$
: no exact solution in general (needs least squares)

$$
\min _{x}\|A x\|^{2} \text { subject to }\|x\|=1 \rightarrow X=V_{n}
$$

Nullspace

Line fitting

Line fitting error:

$$
E=\left\|\left[\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
\vdots & \vdots & \vdots \\
x_{N} & y_{N} & 1
\end{array}\right]\left[\begin{array}{l}
e \\
f \\
g
\end{array}\right]\right\|^{2}=\|\boldsymbol{A} \mathbf{x}\|^{2}
$$

Line fitting
 $$
e x+f y+g=0
$$
 $\underset{x}{\operatorname{minimize}}\|A x\|^{2}$
 subject to $\|\mathbf{x}\|=1$
 $$
\begin{aligned} \mathbf{x}=\mathbf{V}_{3} \quad \text { where } \mathbf{A} & =\mathbf{U D V}^{\top} \\ \mathbf{V} & =\left[\begin{array}{lll} \mathbf{V}_{1} & \mathbf{V}_{2} & \mathbf{V}_{3} \end{array}\right] \end{aligned}
$$

Line fitting

RANSAC: Random Sample Consensus

Strategy:
To find a model that accords with the maximum number of samples

RANSAC: Random Sample Consensus

Strategy:
To find a model that accords with the maximum number of samples
Assumptions:

1. Majority of good samples agree with the underlying model (good apples are same and simple.).
2. Bad samples does not consistently agree with a single model (all bad apples are different and complicated.).

RANSAC: Random Sample Consensus

RANSAC: Random Sample Consensus

Random sampling

RANSAC: Random Sample Consensus

Random sampling
Model building

RANSAC: Random Sample Consensus

Random sampling
Model building
Thresholding

RANSAC: Random Sample Consensus

Random sampling $<$
Model building
Thresholding
Inlier counting

RANSAC: Random Sample Consensus

> Random sampling <
> Model building
> Thresholding
> Inlier counting

RANSAC: Random Sample Consensus

Random sampling <
 Model building
 Thresholding
 Inlier counting

\# of inliers: 23
Maximum number of inliers

RANSAC: Random Sample Consensus

Random sampling <
 Model building
 Thresholding
 Inlier counting

RANSAC: Random Sample Consensus

Random sampling «
 Model building
 Thresholding
 Inlier counting

Probability of building a correct model: w^{n} where n is the number of samples to build a model.

RANSAC: Random Sample Consensus

Random sampling «
 Model building
 Thresholding
 Inlier counting

Probability of building a correct model: w^{n} where n is the number of samples to build a model.
Probability of not building a correct model during kiterations: $\left(1-w^{n}\right)^{k}$

RANSAC: Random Sample Consensus

Random sampling <
 Model building
 Thresholding
 Inlier counting

Probability of building a correct model: w^{n} where n is the number of samples to build a model.
Probability of not building a correct model during kiterations: $\left(1-w^{n}\right)^{k}$

$$
\left(1-w^{n}\right)^{k}=1-p \quad \text { where } p \text { is desired RANSAC success rate. } \quad k=\frac{\log (1-p)}{\log \left(1-w^{n}\right)}
$$

