## Robot Perception: <br> Pose from Point Correspondences or

 the Perspective N Point Problem (PnP)
## Kostas Daniilidis

Where is the car if we know the projections of 3 points with known 3D coordinates?


## Get back to an old idea of bearing!

If we see two points like two lighthouses under a fixed angle, where am I?


Two points are not sufficient, camera can lie anywhere on a circle in 2D


## ... and on a toroid in 3D:



We need a $3^{\text {rd }}$ point: The Perspective 3-Point problem of P3P Or in Photogrammetry the Resection Problem:

The Snellius-Pothenot problem!

J. A. Grunert, "Das Pothenotische Problem in erweiterter Gestalt nebst Über seine Anwendungen in der Geodäsie, Grunerts Archiv für Mathematik und Physik, Band 1, 1841, pp. 238-248.

## We need a $3^{\text {rd }}$ point: The Perspective 3-Point problem of P3P



Let us assume two scene points and denote the known angle between their projections $p_{i}$ and $p_{j}$ as $\delta_{i j}$

Let us denote the squared distance $\left\|P_{i}-P_{j}\right\|^{2}$ with $d_{i j}^{2}$ and the lengths of $P_{j}$ with $d_{j}$.

Then cosine law reads

$$
d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} \cos \delta_{i j}=d_{i j}^{2}
$$

## Pose from 3 points: The perspective 3-point problem (P3P)

$$
d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} \cos \delta_{i j}=d_{i j}^{2}
$$

If we can recover $d_{i}$ and $d_{j}$ the rest will be an absolute orientation problem

$$
\lambda_{j} p_{j}=\mathbf{R} P_{j}+T
$$

to recover translation and rotation between camera and world coordinate system.

## Pose from 3 points: The perspective 3-point problem (P3P)

$$
d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} \cos \delta_{i j}=d_{i j}^{2}
$$

If we can recover $d_{i}$ and $d_{j}$ the rest will be an absolute orientation problem

$$
\lambda_{j} p_{j}=\mathbf{R} P_{j}+T
$$

to recover translation and rotation between camera and world coordinate system.

The cosine law

$$
d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} \cos \delta_{i j}=d_{i j}^{2}
$$

applies for each point pair. With 3 points we could solve 3 quadratic equations for $d_{i=1 \ldots 3}$.

Set $d_{2}=u d_{1}$ and $d_{3}=v d_{1}$ and solve all three equations for $d_{1}$ :

$$
\begin{aligned}
d_{1}^{2} & =\frac{d_{23}^{2}}{u^{2}+v^{2}-2 u v \cos \delta_{23}} \\
d_{1}^{2} & =\frac{d_{13}^{2}}{1+v^{2}-2 v \cos \delta_{13}} \\
d_{1}^{2} & =\frac{d_{12}^{2}}{u^{2}+1-2 u \cos \delta_{12}}
\end{aligned}
$$

which is equivalent to two quadratic equations in $u$ and $v$.

The cosine law

$$
d_{i}^{2}+d_{j}^{2}-2 d_{i} d_{j} \cos \delta_{i j}=d_{i j}^{2}
$$

applies for each point pair. With 3 points we could solve 3 quadratic equations for $d_{i=1 \ldots . .3}$.

Set $d_{2}=u d_{1}$ and $d_{3}=v d_{1}$ and solve all three equations for $d_{1}$ :

$$
\begin{aligned}
d_{1}^{2} & =\frac{d_{23}^{2}}{u^{2}+v^{2}-2 u v \cos \delta_{23}} \\
d_{1}^{2} & =\frac{d_{13}^{2}}{1+v^{2}-2 v \cos \delta_{13}} \\
d_{1}^{2} & =\frac{d_{12}^{2}}{u^{2}+1-2 u \cos \delta_{12}}
\end{aligned}
$$

which is equivalent to two quadratic equations in $u$ and $v$.

$$
\begin{align*}
d_{13}^{2}\left(u^{2}+v^{2}-2 u v \cos \delta_{23}\right) & =d_{23}^{2}\left(1+v^{2}-2 v \cos \delta_{13}\right)  \tag{1}\\
d_{12}^{2}\left(1+v^{2}-2 v \cos \delta_{13}\right) & =d_{13}^{2}\left(u^{2}+1-2 u \cos \delta_{12}\right) \tag{2}
\end{align*}
$$

We solve (1) for $u^{2}$, we insert it in (2) and solve for $u$ which appears only linearly. Then we insert $u$ back in (1) and obtain a quartic (4th degree) in $v$ which can have as many as 4 real solutions for $v$.

In the next lecture we will see how we can solve

$$
P_{i}^{c}=R P_{i}+T
$$

for $R, T$.

## DIRECT SOLUTIONS OF THE PnP PROBLEM

Pose from $N$ points in space given intrinsic parameters $K$ and correspondences $\left(X_{i}, Y_{i}, Z_{i}, x_{i}, y_{i}\right)_{i=1 \ldots N}$ where

$$
\left(\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right) \sim K^{-1}\left(\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right)
$$

where $u_{i}, v_{i}$ are pixel coordinates.

## DIRECT SOLUSTIONS

Pose from $N$ points in space given intrinsic parameters $K$ and correspondences $\left(X_{i}, Y_{i}, Z_{i}, x_{i}, y_{i}\right)_{i=1 \ldots N}$
where

$$
\left(\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right) \sim K^{-1}\left(\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right)
$$

where $u_{i}, v_{i}$ are pixel coordinates.
Given $\left(X_{i}, Y_{i}, Z_{i}, x_{i}, y_{i}\right)_{i=1 \ldots N}$
find $R, T$ such that

$$
\lambda_{i}\left(\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right)=R\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right)+T
$$

How many points do we need?

$$
\begin{aligned}
x_{i} & =\frac{r_{11} X_{i}+r_{12} Y_{i}+r_{13} Z_{i}+T_{1}}{r_{31} X_{i}+r_{32} Y_{i}+r_{33} Z_{i}+T_{3}} \\
y_{i} & =\frac{r_{21} X_{i}+r_{22} Y_{i}+r_{23} Z_{i}+T_{2}}{r_{31} X_{i}+r_{32} Y_{i}+r_{33} Z_{i}+T_{3}}
\end{aligned}
$$

Assuming that point correspondences produce independent equations we would obtain $2 N$ equations for $N$ points.

The unknowns of a rigid transformation are 6, so it seems that the minimal number of points is 3 .

A brute-force approach would be to eliminate depths $\lambda_{i}$ and try to find $R, T$ such that

$$
\begin{aligned}
x_{i} & =\frac{r_{11} X_{i}+r_{12} Y_{i}+r_{13} Z_{i}+T_{1}}{r_{31} X_{i}+r_{32} Y_{i}+r_{33} Z_{i}+T_{3}} \\
y_{i} & =\frac{r_{21} X_{i}+r_{22} Y_{i}+r_{23} Z_{i}+T_{2}}{r_{31} X_{i}+r_{32} Y_{i}+r_{33} Z_{i}+T_{3}}
\end{aligned}
$$

This is a non-linear problem which needs an iterative approach.

A "dirty" trick would be to solve for a vector of 12 unknowns ( $R^{\prime}, T^{\prime}$ ) and then find the closest orthogonal $R$ to $R^{\prime}$.

