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P = [x,y,z]

From the 3D to 2D & vice versa

Image

3D world
p = [x,y]

•Let’s now focus on 2D



How to represent images?

Feature 
Detection

e.g. DoG



How to represent images?

Feature 
Detection

Feature 
Description

• Estimation
• Matching
• Indexing
• Detection

e.g. DoG

e.g. SIFT



Courtesy of TKK Automation Technology Laboratory
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Estimation



Estimation



Image 1 Image 2

Matching

H



A
Object modeling and detection
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Edge detection

L
J



What causes an edge?
Identifies sudden changes in an image



What causes an edge?

• Depth discontinuity

• Surface orientation 
discontinuity

• Reflectance 
discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
highlights; shadows)

Identifies sudden changes in an image



Example of edge 
detection



Edge Detection

– Good detection accuracy: 
• minimize the probability of false positives (detecting spurious 

edges caused by noise), 
• false negatives (missing real edges)

– Good localization: 
• edges must be detected as close as possible to the true edges.

– Single response constraint: 
• minimize the number of local maxima around the true edge

(i.e. detector must return single point for each true edge point)

• Criteria for optimal edge detection (Canny 86):



Edge Detection
• Examples:

True 
edge Poor

localization
Too many
responses

Poor robustness 
to noise



Designing an edge detector

• Two ingredients:

• Use derivatives (in x and y direction) to 
define a location with high gradient .

• Need smoothing to reduce noise prior to 
taking derivative
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See CS231A, lecture 4 for 
details on convolution and 
linear filters



•Smoothing
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•Derivative

= Sx Sy
!" #$ = gradient vector

Edge detector in 2D

[Eq. 3] [Eq. 4]
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Canny Edge Detection (Canny 86):

See CS131A for details

Canny with Canny with original 

• The choice of σ depends on desired behavior
– large σ detects large scale edges
– small σ detects fine features



Other edge detectors:
- Sobel
- Canny-Deriche
- Differential



Corner/blob detectors



•Repeatability
– The same feature can be found in several 

images despite geometric and photometric 
transformations 

•Saliency
– Each feature is found at an “interesting” 

region of the image

•Locality
– A feature occupies a “relatively small” 

area of the image; 

Corner/blob detectors



Repeatability

Scale 
invariance

Pose invariance
•Rotation
•Affine

Illumination 
invariance



• Saliency J
L

•Locality
LJ



Harris corner detector
C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings of the 
4th Alvey Vision Conference: pages 147--151.

See CS131A for details



Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

Explore intensity changes within a window 
as the window changes location



Results



Harris corner doesn’t tell us the scale of the corner!



Blob detectors
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Edge detection
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Edge detection as zero crossing
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Edge = zero crossing of the second derivative

[Eq. 8]



Edge detection as zero crossing

edge edge

*

=



From edges to blobs

Magnitude of the Laplacian response achieves a maximum at the center of the blob, 
provided the scale of the Laplacian is “matched” to the scale of the blob

maximum

• Can we use the laplacian to find a blob (RECT function)?

*

=

*

=

*

=



From edges to blobs

maximum

• Can we use the laplacian to find a blob (RECT function)?

*

=

*

=

*

=

What if the blob is slightly thicker or slimmer?  



Scale selection
Convolve signal with Laplacians at several scales and looking 
for the maximum response. How in increase the scale??

By increasing σ



Scale normalization

• To keep the energy of the response the same, 
must multiply Gaussian kernel by σ

• Laplacian is the second Gaussian derivative, so 
it must be multiplied by σ2

σ 2 d 2

dx2
gng(x) = 1

2π σ
e
−
x2

2σ 2

Normalized 
Laplacian



Characteristic scale
Original 
signal

Maximum J

Scale-normalized Laplacian response

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

T. Lindeberg (1998). "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2): pp 77--116. 

The characteristic scale is the scale that produces peak of Laplacian response

This procedure allows us to:
1) detect the blob
2) estimate the size of the blob!



Characteristic scale

Original 
signal

Here is what happens if we don’t normalize the Laplacian:

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

This should 
give the max 
response L



Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D

∇norm
2 g =σ 2 ∂2g

∂x2
+
∂2g
∂y2

!

"
#

$

%
&=σ 2 (gxx + gyy )Scale-normalized:

[Eq. 9]



Scale selection

• For a binary circle of radius r, the Laplacian
achieves a maximum at 2/r=σ

r
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Scale-space blob detector

1. Convolve image with scale-normalized 
Laplacian at several scales

2. Find maxima of squared Laplacian response in 
scale-space

The maxima indicate 
that a blob has been 
detected and what’s 
its  intrinsic scale



Scale-space blob detector: 
Example



Scale-space blob detector: Example



Scale-space blob detector: 
Example



• Approximating the Laplacian with a difference 
of Gaussians:

L =σ 2 gxx (x, y,σ )+ gyy (x, y,σ )( )

DoG = g(x, y,2σ )− g(x, y,σ )

(Laplacian)

Difference of gaussian with 
scales 2 σ and σ

Difference of Gaussians (DoG)
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04

In general:

DoG = g(x, y,kσ )− g(x, y,σ ) ≈ (k −1)σ 2L

[Eq. 10]

[Eq. 11]

[Eq. 12]



Affine invariant detectors

Similarly to characteristic scale, we can define 
the characteristic shape of a blob

K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest point 
detectors, IJCV 60(1):63-86, 2004. 



Detector Illuminatio
n

Rotation Scale View 
point

Lowe ’99 
(DoG)

Yes*

Properties of detectors

f → f + b 

f

x

b



Detector Illuminatio
n

Rotation Scale View 
point

Lowe ’99 
(DoG)

Yes* Yes Yes No

Properties of detectors

f → f + b 

f

x

b



Detector Illuminatio
n

Rotation Scale View 
point

Lowe ’99 
(DoG)

Yes* Yes Yes No

Harris corner Yes* Yes No No

Mikolajczyk & 
Schmid ’01, ‘02

Yes* Yes Yes Yes

Tuytelaars, ‘00 Yes* Yes No  (Yes ’04 ) Yes

Kadir & Brady, 
01

Yes* Yes Yes no

Matas, ’02 Yes* Yes Yes no

Properties of detectors
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Feature 
Detection

Feature 
Description

• Estimation
• Matching
• Indexing
• Detection

e.g. DoG

e.g. SIFT

The big picture…



Properties

• Invariant w.r.t:
•Illumination
•Pose
•Scale 
•Intraclass variability

A a
• Highly distinctive (allows a single feature to find its correct 
match with good probability in a large database of features)

Depending on the application a descriptor must 
incorporate information that is: 



w= [                                                                  
]

The simplest descriptor

…
1 x NM vector of pixel intensities

N

M



w= [                                                                  
]

Normalized vector of intensities

…
1 x NM vector of pixel intensities

N

M

)ww(
)ww(wn −

−
=

Makes the descriptor invariant with respect to affine 
transformation of the illumination condition
[Eq. 13]



Illumination normalization
•Affine intensity change:

w → w + b 

w

Index of w

• Make each patch zero mean: remove b
• Make unit variance: remove a

→ a w + b )ww(
)ww(wn −

−
=

[Eq. 14]



Why can’t we just use this?

• Sensitive to small variation of:

• location
• Pose
• Scale
• intra-class variability

• Poorly distinctive



Sensitive to pose variations

Normalized Correlation:

)ww)(ww(
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Descripto
r

Illuminatio
n

Pose Intra-class 
variab.

PATCH Good Poor Poor

Properties of descriptors



filter responses

Bank of filters

image

descriptor

filter bank 

More robust but still quite
sensitive to pose variations

* =

http://people.csail.mit.edu/billf/papers/steerpaper91FreemanAdelson.pdf
A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 2001. 



Descripto
r

Illuminatio
n

Pose Intra-class 
variab.

PATCH Good Poor Poor

FILTERS Good Medium Medium

Properties of descriptors



SIFT descriptor

• Alternative representation for image regions
• Location and characteristic scale s given by DoG

detector

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04

s

Image window

• Compute gradient at each pixel



SIFT descriptor

• Alternative representation for image regions
• Location and characteristic scale s given by DoG

detector

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04

Image window

1. Compute gradient at each pixel

2. N x N spatial bins
3. Compute an histogram hi of M 
orientations for each bin i

s

90 180 240 360

3
100



SIFT descriptor

• Alternative representation for image regions
• Location and characteristic scale s given by DoG

detector

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04

Image window

1 Compute gradient at each pixel

2 N x N spatial bins
3 Compute an histogram hi of M 
orientations for each bin i

s

4 Concatenate hi for i=1 to N2 to form a 
1xMN2 vector H 

Typically M = 8; N= 4
H = 1 x 128 descriptor

5 Gaussian center-weighting
6 Normalize to unit norm



• Find dominant orientation by building a 
orientation histogram

• Rotate all orientations by the dominant 
orientation

0 2 π

This makes the SIFT descriptor rotational invariant

Rotational invariance



Descripto
r

Illuminatio
n

Pose Intra-class 
variab.

PATCH Good Poor Poor

FILTERS Good Medium Medium

SIFT Good Good Medium

Properties of descriptors

• SIFT is robust w.r.t. small variation in:

• Illumination (thanks to gradient & normalization) 
• Pose (small affine variation thanks to orientation histogram )
• Scale (scale is fixed by DOG)
• Intra-class variability (small variations thanks to histograms)



•Like SIFT, but…
– Sampled on a dense, regular grid around the 

object 

– Gradients are contrast normalized in 
overlapping blocks

HoG = Histogram of Oriented Gradients
NavneetDalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



A
Shape context descriptor

Belongie et al. 2002

1    2    3     4     5     10   11   12  13   14   ….

3

1

Histogram (occurrences within each bin)

Bin #

00
//

13th



Shape context descriptor

C
ourtesy of S. Belongie

and J. M
alik

descriptor 1 descriptor 2 descriptor 3



Other	detectors/descriptors

• ORB:	an	efficient	alternative	to	SIFT	or	SURF

• Fast	Retina	Key- point	(FREAK)
A.	Alahi,	R.	Ortiz,	and	P.	Vandergheynst.	FREAK:	Fast	Retina	Keypoint.	In	IEEE	Conference	on	Computer	Vision	and	Pattern	Recognition,	
2012.	CVPR	2012	Open	Source	Award	Winner.

Ethan	Rublee,	Vincent	Rabaud,	Kurt	Konolige,	Gary	R.	Bradski:	ORB:	An	efficient	alternative	to	SIFT	or	SURF.	ICCV	2011

Rosten.	Machine	Learning	for	High-speed	Corner	Detection,	2006.

• FAST	(corner	detector)

Herbert	Bay,	Andreas	Ess,	Tinne Tuytelaars,	Luc	Van	Gool,	"SURF:	Speeded	Up	Robust	Features",	Computer	Vision	and	Image	
Understanding	(CVIU),	Vol.	110,	No.	3,	pp.	346--359,	2008

• SURF:	Speeded	Up	Robust	Features

• HOG:	Histogram	of	oriented	gradients
Dalal &	Triggs,	2005



Using	CNNs	to	detect	and	
describe	features

More on 5/18/2016 (guest lecture CNNs!)  

Layer 1

[Zeiler
&

 Fergus EC
C

V
 14]

Layer 2 Layer 3



Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. R. Girshick, J. 
Donahue, T. Darrell, J. Malik, 2014

Object	detection	using	CNN	features!



Next lecture: 

Introduction to recognition


