Recovering structure from a single view

Calibration rig

From calibration rig
\rightarrow location/pose of the rig, K
From points and lines at infinity

+ orthogonal lines and planes
\rightarrow structure of the scene, K
Knowledge about scene (point correspondences, geometry of lines \& planes, etc...

Recovering structure from a single view

Why is it so difficult?
Intrinsic ambiguity of the mapping from 3D to image (2D)

Recovering structure from a single view

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik

Two eyes help!

Two eyes help!

This is called triangulation

Triangulation

- Find P^{*} that minimizes

$$
d\left(p, M P^{*}\right)+d\left(p^{\prime}, M^{\prime} P^{*}\right)[\text { Eq. } 2]
$$

Multi (stereo)-view geometry

- Camera geometry: Given corresponding points in two images, find camera matrices, position and pose.
- Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images.
- Correspondence: Given a point p in one image, how can I find the corresponding point p^{\prime} in another one?

Epipolar geometry

- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles e, \mathbf{e}^{\prime}
$=$ intersections of baseline with image planes
= projections of the other camera center

Example of epipolar lines

Example: Parallel image planes

- Baseline intersects the image plane at infinity
- Epipoles are at infinity
- Epipolar lines are parallel to u axis

Example: Parallel Image Planes

Example: Forward translation

- The epipoles have same position in both images
- Epipole called FOE (focus of expansion)

Epipolar Constraint

- Two views of the same object
- Given a point on left image, how can I find the corresponding point on right image?

Epipolar geometry

Epipolar Constraint

Epipolar Constraint

- $I=E p^{\prime}$ is the epipolar line associated with p^{\prime}
- $I^{\prime}=E^{\top} p$ is the epipolar line associated with p
- $E e^{\prime}=0$ and $E^{\top} e=0$
- E is 3×3 matrix; 5 DOF
- E is singular (rank two)

Epipolar Constraint

[Eq. 13] $\mathrm{p}^{\mathrm{T}} \mathrm{F} \mathrm{p}^{\prime}=0 \quad F=K^{-T} \cdot\left[T_{\times}\right] \cdot R K^{\prime-1}$
F = Fundamental Matrix
[Eq. 14]
(Faugeras and Luong, 1992)

Epipolar Constraint

- $\mathrm{I}=\mathrm{F} \mathrm{p}^{\prime}$ is the epipolar line associated with p^{\prime}
- $I^{\prime}=F^{\top} p$ is the epipolar line associated with p
- $\mathrm{Fe}^{\prime}=0$ and $\mathrm{F}^{\top} \mathrm{e}=0$
- F is 3×3 matrix; 7 DOF
- F is singular (rank two)

Why F is useful?

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second imag

Why F is useful?

- F captures information about the epipolar geometry of 2 views + camera parameters
- MORE IMPORTANTLY: F gives constraints on how the scene changes under view point transformation (without reconstructing the scene!)
- Powerful tool in:
- 3D reconstruction
- Multi-view object/scene matching

