

$\bullet\left(u_{1}, v_{1}\right)$

Bob's view

Mike's view

Bob's view

Mike's view

Bob's view

Mike's view

Observation:
Given a point in Bob's view, there exists a conjugate line passing the corresponding point in Mike's view.

Point correspondence

Point correspondence

$\underset{\text { Mike }}{P_{2}}=\mathrm{K}\left[\begin{array}{ll}R & t\end{array}\right]$
$\underset{\text { 30 pointin camera 2 }}{\mathbf{X}_{2}=\mathrm{RX}_{1}+\mathrm{t}}$

$$
\mathrm{X}_{2}-\mathrm{t}=\mathrm{RX}_{1}
$$

Plane spanned by \mathbf{t} and \mathbf{X}_{2} $\mathbf{t} \times \mathbf{X}_{2}=[\mathrm{t}]_{\times} \mathbf{X}_{2}$
$P_{2}=K[R$ Mike

$$
0=\left(\mathbf{X}_{2}-\mathbf{t}\right)^{\top}[\mathbf{t}]_{\times} \mathbf{X}_{2}
$$

$$
\begin{aligned}
& \mathbf{X}_{2}=\mathbf{R X} \mathbf{X}_{1}+\mathbf{t} \\
& 3 \mathrm{D} \text { point in camera } 2
\end{aligned}
$$

$$
\mathrm{X}_{2}-\mathrm{t}=\mathrm{RX}_{1}
$$

Plane spanned by \mathbf{t} and \mathbf{X}_{2} $\mathbf{t} \times \mathbf{X}_{2}=[\mathrm{t}]_{\times} \mathbf{X}_{2}$
t : Camera translation in camera 2

$$
\begin{aligned}
& \mathbf{P}_{1}= \\
& \text { Bob }
\end{aligned}
$$

$P_{2}=K\left[\begin{array}{ll}R & t\end{array}\right]$
Mike

$$
0=\left(\mathbf{X}_{2}-\mathbf{t}\right)^{\top}[\mathbf{t}]_{\times} \mathbf{X}_{2}=\left(\mathrm{RX}_{1}\right)^{\top}[\mathbf{t}]_{\times} \mathbf{X}_{2}
$$

$$
\begin{aligned}
& \mathbf{X}_{2}=\mathbf{R} \mathbf{X}_{1}+\mathbf{t} \\
& 3 \mathrm{D} \text { point in camera } 2
\end{aligned}
$$

Plane spanned by \mathbf{t} and \mathbf{X}_{2} $\mathbf{t} \times \mathbf{X}_{2}=[\mathrm{t}]_{\times} \mathbf{X}_{2}$
t : Camera translation in camera 2

$$
P_{1}=K\left[I_{3 \times 3}\right.
$$

Bob
$P_{2}=K[R$
Mike

$$
\begin{aligned}
0 & \left.=\left(\mathbf{X}_{2}-\mathbf{t}\right)^{\top}[\mathbf{t}]_{\times} \mathbf{X}_{2}=(\mathbf{R X})^{\prime}\right)^{\top}[\mathbf{t}]_{\times} \mathbf{X}_{2} \\
& =\mathbf{X}_{1}^{\top} \mathbf{R}^{\top}[]_{\times} \mathbf{X}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{X}_{2}=\mathbf{R} \mathbf{X}_{1}+\mathbf{t} \\
& 3 \mathrm{D} \text { point in camera } 2
\end{aligned}
$$

$$
\mathrm{X}_{2}-\mathbf{t}=\mathrm{RX}_{1}
$$

Plane spanned by \mathbf{t} and \mathbf{X}_{2} $\mathbf{t} \times \mathbf{X}_{2}=[\mathrm{t}]_{\times} \mathbf{X}_{2}$
t : Camera translation in camera 2

$$
P_{1}=K\left[\begin{array}{ll}
I_{3 \times 3} & 0
\end{array}\right]
$$

$$
\mathrm{P}_{2}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{t}
\end{array}\right]
$$

Mike

$$
\mathbf{X}_{2}-\mathbf{t}=\mathrm{RX}_{1}
$$

\uparrow Plane spanned by \mathbf{t} and \mathbf{X}_{2}

$$
\mathbf{t} \times \mathbf{X}_{2}=[\mathrm{t}]_{\times} \mathbf{X}_{2}
$$

t : Camera translation in camera 2

$$
P_{1}=K\left[I_{3 \times 3}\right.
$$

Bob

$P_{2}=K[R$

Mike

$$
\begin{aligned}
& \left.0=\left(\mathbf{X}_{2}-\mathbf{t}\right)^{\top}[\mathrm{t}]_{\times} \mathbf{X}_{2}=(\mathrm{RX})^{\top}\right)^{\top}[\mathrm{t}]_{\times} \mathbf{X}_{2} \\
& =X_{1}^{\top} \mathrm{R}^{\top}[\mathrm{t}]_{x} \mathrm{X}_{2} \\
& \left.=-X_{2}^{\top}[t]\right]_{x} X_{1}=-X_{2}^{\top} E X_{1} \\
& E=[t] \times R
\end{aligned}
$$

Bob's view

Mike's view

Observation:
Given a point in Bob's view, there exists a conjugate line passing the corresponding point in Mike's view.

Epipolar line

$$
\begin{aligned}
& X_{2}^{\top} E X_{1}=0 \\
& E=[t]_{\times} R
\end{aligned}
$$

$\mathbf{P}_{1}=\mathrm{K}\left[I_{3 \times 3}\right.$ Bob

0]
$P_{2}=K[R$
Mike

Epipolar line computation

- X_{1}

Epipolar line computation

- X_{2}

Epipolar line computation

- X_{2}

Epipolar line computation

- X_{2}

Epipolar line computation

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{I}_{3 \times 3} & 0
\end{array}\right]
\end{aligned}
$$

Epipolar line

$$
\underset{\text { Mike }}{\mathbf{P}_{2}}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{t}
\end{array}\right]
$$

Epipolar line computation

Epipole computation

Epipole computation

