Parameter estimation
class 5

Multiple View Geometry
Comp 290-089
Marc Pollefeys
Content

• **Background:** Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation.
• **Single View:** Camera model, Calibration, Single View Geometry.
• **Two Views:** Epipolar Geometry, 3D reconstruction, Computing F, Computing structure, Plane and homographies.
• **Three Views:** Trifocal Tensor, Computing T.
• **More Views:** N-Linearities, Multiple view reconstruction, Bundle adjustment, auto-calibration, Dynamic SfM, Cheirality, Duality
<table>
<thead>
<tr>
<th>Jan. 7, 9</th>
<th>Intro & motivation</th>
<th>Projective 2D Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 14, 16</td>
<td>(no class)</td>
<td>Projective 2D Geometry</td>
</tr>
<tr>
<td>Jan. 21, 23</td>
<td>Projective 3D Geometry</td>
<td>(no class)</td>
</tr>
<tr>
<td>Jan. 28, 30</td>
<td>Parameter Estimation</td>
<td>Parameter Estimation</td>
</tr>
<tr>
<td>Feb. 4, 6</td>
<td>Algorithm Evaluation</td>
<td>Camera Models</td>
</tr>
<tr>
<td>Feb. 11, 13</td>
<td>Camera Calibration</td>
<td>Single View Geometry</td>
</tr>
<tr>
<td>Feb. 18, 20</td>
<td>Epipolar Geometry</td>
<td>3D reconstruction</td>
</tr>
<tr>
<td>Mar. 4, 6</td>
<td>Planes & Homographies</td>
<td>Trifocal Tensor</td>
</tr>
<tr>
<td>Mar. 18, 20</td>
<td>Three View Reconstruction</td>
<td>Multiple View Geometry</td>
</tr>
<tr>
<td>Mar. 25, 27</td>
<td>MultipleView Reconstruction</td>
<td>Bundle adjustment</td>
</tr>
<tr>
<td>Apr. 1, 3</td>
<td>Auto-Calibration</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 8, 10</td>
<td>Dynamic SfM</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 15, 17</td>
<td>Cheirality</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 22, 24</td>
<td>Duality</td>
<td>Project Demos</td>
</tr>
</tbody>
</table>
Projective 3D Geometry

- Points, lines, planes and quadrics
- Transformations
- Π_∞, ω_∞ and Ω
Singular Value Decomposition

\[A = U \Sigma V^T \]

Homogeneous least-squares

\[\min \|AX\| \text{ subject to } \|X\| = 1 \quad \text{solution } X = V_n \]
Parameter estimation

• **2D homography**
 Given a set of \((x_i,x_i')\), compute \(H (x_i' = H x_i)\)

• **3D to 2D camera projection**
 Given a set of \((X_i,x_i)\), compute \(P (x_i = PX_i)\)

• **Fundamental matrix**
 Given a set of \((x_i,x_i')\), compute \(F (x_i'^t F x_i = 0)\)

• **Trifocal tensor**
 Given a set of \((x_i,x_i',x_i'')\), compute \(T\)
Number of measurements required

- At least as many independent equations as degrees of freedom required
- Example: \[x' = Hx \]

\[
\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

2 independent equations / point
8 degrees of freedom

4x2 \geq 8
Approximate solutions

- Minimal solution
 4 points yield an exact solution for H
- More points
 - No exact solution, because measurements are inexact ("noise")
 - Search for "best" according to some cost function
 - Algebraic or geometric/statistical cost
Gold Standard algorithm

- Cost function that is optimal for some assumptions
- Computational algorithm that minimizes it is called “Gold Standard” algorithm
- Other algorithms can then be compared to it
Direct Linear Transformation (DLT)

\[\mathbf{x}_{ii}^{\prime\prime} \propto \mathbf{Hx}_i = 0 \]

\[\mathbf{x}_i^{\prime} = (x_i^{\prime}, y_i^{\prime}, w_i^{\prime})^T \]

\[\mathbf{Hx}_i = \begin{pmatrix} h_1^T x_i \\ h_2^T x_i \\ h_3^T x_i \end{pmatrix} \]

\[\mathbf{x}_i^{\prime} \times \mathbf{Hx}_i = \begin{pmatrix} y_i^{\prime} h_3^T x_i - w_i^{\prime} h_2^T x_i \\ w_i^{\prime} h_1^T x_i - x_i^{\prime} h_3^T x_i \\ x_i^{\prime} h_2^T x_i - y_i^{\prime} h_1^T x_i \end{pmatrix} \]

\[
\begin{bmatrix}
0^T & -w_i^{\prime}x_i^T & y_i^{\prime}x_i^T \\
-w_i^{\prime}x_i^T & 0^T & -x_i^{\prime}x_i^T \\
-y_i^{\prime}x_i^T & x_i^{\prime}x_i^T & 0^T
\end{bmatrix}
\begin{pmatrix}
h_1^T \\
h_2^T \\
h_3^T
\end{pmatrix} = 0
\]

\[A_i \mathbf{h} = 0 \]
Direct Linear Transformation (DLT)

- Equations are linear in h
 \[A_i h = 0 \]
- Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)
 \[
 \begin{bmatrix}
 0^T & -w'_ix'_i^T & y'_ix'_i^T \\
 0^T & -w'_ix'_i^T & y'_ix'_i^T \\
 w'_ix'_i^T & 0^T & -x'_ix'_i^T \\
 w'_ix'_i^T & 0^T & -x'_ix'_i^T \\
 y'_ix'_i & x'_ix'_i^T & 0^T
 \end{bmatrix}
 \begin{bmatrix}
 h^1 \\
 h^2 \\
 h^3
 \end{bmatrix} = 0
\]
 (only drop third row if $A_i^3 \neq 0$
- Holds for any homogeneous representation, e.g. $(x'_i, y'_i, 1)$
Direct Linear Transformation (DLT)

- Solving for H

\[
\begin{bmatrix}
A_1 \\
A_2 \\
A_3 \\
A_4
\end{bmatrix}h = 0
\]

Size A is 8x9 or 12x9, but rank 8

Trivial solution is $h=0^T_9$ is not interesting
1-D null-space yields solution of interest
pick for example the one with $\|h\| = 1$
Direct Linear Transformation (DLT)

- Over-determined solution

$$\begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_n
\end{bmatrix} h = 0$$

No exact solution because of inexact measurement i.e. “noise”

Find approximate solution
- Additional constraint needed to avoid 0, e.g. $\|h\| = 1$
- $Ah = 0$ not possible, so minimize $\|Ah\|$
DLT algorithm

Objective
Given \(n \geq 4 \) 2D to 2D point correspondences \(\{x_i \leftrightarrow x'_i\}\), determine the 2D homography matrix \(H \) such that \(x'_i = Hx_i \).

Algorithm
(i) For each correspondence \(x_i \leftrightarrow x'_i \) compute \(A_i \). Usually only two first rows needed.
(ii) Assemble \(n \) 2x9 matrices \(A_i \) into a single 2nx9 matrix \(A \)
(iii) Obtain SVD of \(A \). Solution for \(h \) is last column of \(V \)
(iv) Determine \(H \) from \(h \)
Inhomogeneous solution

Since h can only be computed up to scale, pick $h_j = 1$, e.g. $h_9 = 1$, and solve for 8-vector $\sim h$

$$
\begin{bmatrix}
0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\
x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i y_i' & y_i y_i'
\end{bmatrix}
\sim h = \begin{pmatrix}
-w_i y_i' \\
w_i x_i'
\end{pmatrix}
$$

Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points)

However, if $h_9 = 0$ this approach fails
also poor results if h_9 close to zero
Therefore, not recommended

Note $h_9 = H_{33} = 0$ if origin is mapped to infinity

$$
1^T H x_0 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} H \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0
$$
Degenerate configurations

Constraints: \(x'_i \times H x_i = 0 \quad i=1,2,3,4 \)

Define: \(H^* = x'_4 l^T \)

Then,
\[
H^* x_i = x'_4 (l^T x_i) = 0, \quad i = 1,2,3
\]
\[
H^* x_4 = x'_4 (l^T x_4) = kx'_4
\]

\(H^* \) is rank-1 matrix and thus not a homography

If \(H^* \) is unique solution, then no homography mapping \(x_i \rightarrow x'_i \) (case B)
If further solution \(H \) exist, then also \(\alpha H^* + \beta H \) (case A)
(2-D null-space in stead of 1-D null-space)
Solutions from lines, etc.

2D homographies from 2D lines

\[l_i' = H^T l_i \quad \text{Ah} = 0 \]

Minimum of 4 lines

3D Homographies (15 dof)

Minimum of 5 points or 5 planes

2D affinities (6 dof)

Minimum of 3 points or lines

Conic provides 5 constraints

Mixed configurations?
Cost functions

- Algebraic distance
- Geometric distance
- Reproduction error
- Comparison
- Geometric interpretation
- Sampson error
Algebraic distance

DLT minimizes $\|Ah\|

e = Ah \quad \text{residual vector}

e_i \quad \text{partial vector for each } (x_i \leftrightarrow x_i')

algebraic error vector

$$d_{\text{alg}}(x'_i, Hx_i)^2 = \|e_i\|^2 = \left\| \begin{bmatrix} 0^T & -w'_ix_i^T & -y'_ix_i^T \\ -w'_ix_i^T & 0^T & -x'_ix_i^T \end{bmatrix} h \right\|_2^2$$

algebraic distance

$$d_{\text{alg}}(x_1, x_2)^2 = a_1^2 + a_2^2 \quad \text{where } a = (a_1, a_2, a_3)^T = x_1 \times x_2$$

$$\sum_i d_{\text{alg}}(x'_i, Hx_i)^2 = \sum_i \|e_i\|^2 = \|Ah\|^2 = \|e\|^2$$

Not geometrically/statistically meaningfull, but given good normalization it works fine and is very fast (use for initialization)
Geometric distance

\(\mathbf{X} \) measured coordinates
\(\hat{\mathbf{X}} \) estimated coordinates
\(\overline{\mathbf{X}} \) true coordinates

\(d(.,.) \) Euclidean distance (in image)

Error in one image

\[
\hat{H} = \arg\min_H \sum_i d(x_i', H\overline{x}_i)^2
\]

e.g. calibration pattern

Symmetric transfer error

\[
\hat{H} = \arg\min_H \sum_i d(x_i, H^{-1}x_i')^2 + d
\]

Reprojection error

\[
(\hat{H}, \hat{x}_i, \hat{x}_i') = \arg\min_{H, \hat{x}_i, \hat{x}_i'} \sum_i d(x_i, \hat{x}_i)^2 + d(x_i', \hat{x}_i')^2
\]

subject to \(\hat{x}_i' = \hat{H}\hat{x}_i \)
Reprojection error

\[d(x, H^{-1}x')^2 + d(x', Hx)^2 \]

\[d(x, \hat{x})^2 + d(x', \hat{x}')^2 \]
Comparison of geometric and algebraic distances

Error in one image

\[x'_i = (x'_i, y'_i, w'_i)^T \quad \hat{x}'_i = (\hat{x}'_i, \hat{y}'_i, \hat{w}'_i)^T = H\bar{x} \]

\[
\begin{bmatrix}
 0^T \\
w'_i \hat{x}'_i \\
\end{bmatrix} = \begin{bmatrix}
 0^T \\
 w'_i \hat{x}'_i \\
\end{bmatrix}
= e_i \begin{bmatrix}
 0^T \\
 \begin{pmatrix}
 1 & 0 & 0 \\
 w'_i \hat{x}'_i \\
 w'_i \hat{y}'_i \\
\end{pmatrix}
\end{bmatrix}
\]

\[
d_{\text{alg}}(x'_i, \hat{x}'_i)^2 = (y'_i \hat{w}'_i - w'_i \hat{y}'_i)^2 + (w'_i \hat{x}'_i - x'_i \hat{w}'_i)^2
\]

\[
d(x'_i, \hat{x}'_i)^2 = \left(\left(\frac{y'_i}{w'_i} - \frac{\hat{y}'_i}{\hat{w}'_i}\right)^2 + \left(\frac{\hat{x}'_i}{\hat{w}'_i} - \frac{x'_i}{w'_i}\right)^2\right)^{1/2}
\]

\[= d_{\text{alg}}(x'_i, \hat{x}'_i) / w'_i \hat{w}'_i \]

\[w'_i = 1 \text{ typical, but not } \hat{w}'_i = h_3 x_i, \text{ except for affinities} \]

For affinities DLT can minimize geometric distance

Possibility for iterative algorithm
Geometric interpretation of reprojection error

Estimating homography~fit surface \(\nu_H \) to points \(X=(x,y,x',y')^T \) in \(\mathbb{R}^4 \).

\[x'_i \times H x_i = 0 \] represents 2 quadrics in \(\mathbb{R}^4 \) (quadratic in \(X \))

\[\left\| X_i - \hat{X}_i \right\|^2 = (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 + (x'_i - \hat{x}'_i)^2 + (y'_i - \hat{y}'_i)^2 \]

\[= d(x_i, \hat{x}_i)^2 + d(x'_i, \hat{x}'_i)^2 \]

\[d(x_i, \hat{x}_i)^2 + d(x'_i, \hat{x}'_i)^2 = d_\perp(X_i, \nu_H)^2 \]

Analog to conic fitting

\[d_{\text{alg}}(x, C)^2 = x^T C x \]

\[d_\perp(x, C)^2 \]
Sampson error

between algebraic and geometric error

Vector \hat{X} that minimizes the geometric error $\|X - \hat{X}\|^2$ is the closest point on the variety \mathcal{V}_H to the measurement X

Sampson error: 1st order approximation of \hat{X}

$$Ah = C_H(X) = 0$$

$$C_H(X + \delta_X) = C_H(X) + \frac{\partial C_H}{\partial X} \delta_X \quad \delta_X = \hat{X} - X \quad C_H(\hat{X}) = 0$$

$$C_H(X) + \frac{\partial C_H}{\partial X} \delta_X = 0 \quad J\delta_X = -e \quad \text{with } J = \frac{\partial C_H}{\partial X}$$

Find the vector δ_X that minimizes $\|\delta_X\|$ subject to $J\delta_X = -e$
Find the vector δ_x that minimizes $\|\delta_x\|$ subject to $J\delta_x = -e$

Use Lagrange multipliers:

minimize $\delta_x^T \delta_x - 2\lambda (J\delta_x + e) = 0$

derivatives $2\delta_x - 2\lambda^T J = 0^T \quad \Rightarrow \quad \delta_x = J^T \lambda$

$2(J\delta_x + e) = 0 \quad \Rightarrow \quad JJ^T \lambda + e = 0$

$\Rightarrow \lambda = -(JJ^T)^{-1} e$

$\Rightarrow \delta_x = -J^T(JJ^T)^{-1} e$

$\hat{X} = X + \delta_x \quad \|\delta_x\|^2 = \delta_x^T \delta_x = e^T(JJ^T)^{-1} e$
Sampson error

between algebraic and geometric error

Vector \hat{X} that minimizes the geometric error $\|X - \hat{X}\|^2$ is the closest point on the variety \mathcal{V}_H to the measurement X.

Sampson error: 1st order approximation of \hat{X}

$$Ah = C_H(X) = 0$$

$$C_H(X + \delta_X) = C_H(X) + \frac{\partial C_H}{\partial X} \delta_X \quad \delta_X = \hat{X} - X \quad C_H(\hat{X}) = 0$$

$$C_H(X) + \frac{\partial C_H}{\partial X} \delta_X = 0 \quad J\delta_X = -e$$

Find the vector δ_X that minimizes $\|\delta_X\|$ subject to $J\delta_X = -e$

$$\|\delta_X\|^2 = \delta_X^T \delta_X = e^T(JJ^T)^{-1} e \quad \text{(Sampson error)}$$
Sampson approximation

\[\| \delta_X \|^2 = e^T (J J^T)^{-1} e \]

A few points

(i) For a 2D homography \(X=(x,y,x',y') \)
(ii) \(e = C_H(X) \) is the algebraic error vector
(iii) \(J = \frac{\partial C_H}{\partial X} \) is a 2x4 matrix, e.g. \(J_{11} = \frac{\partial}{\partial x} \left(-w'_i x_i^T h^2 + y'_i x_i^T h^3 \right) / \partial x = -w'_i h_{21} + y'_i h_{31} \)
(iv) Similar to algebraic error \(\| e \|^2 = e^T e \) in fact, same as Mahalanobis distance \(\| e \|^2_{JJ^T} \)
(v) Sampson error independent of linear reparametrization (cancels out in between \(e \) and \(J \))
(vi) Must be summed for all points \(\sum e^T (J J^T)^{-1} e \)
(vii) Close to geometric error, but much fewer unknowns
Statistical cost function and Maximum Likelihood Estimation

- Optimal cost function related to noise model
- Assume zero-mean isotropic Gaussian noise (assume outliers removed)

\[
\Pr(x) = \frac{1}{2\pi\sigma^2} e^{-d(x,\bar{x})^2/(2\sigma^2)}
\]

Error in one image

\[
\Pr(\{x_i'\} \mid H) = \prod_i \frac{1}{2\pi\sigma^2} e^{-d(x_i',H\bar{x}_i)^2/(2\sigma^2)}
\]

\[
\log \Pr(\{x_i'\} \mid H) = -\frac{1}{2\sigma^2} \sum d(x_i', H\bar{x}_i)^2 + \text{constant}
\]

Maximum Likelihood Estimate

\[
\sum d(x_i', H\bar{x}_i)^2
\]
Statistical cost function and Maximum Likelihood Estimation

- Optimal cost function related to noise model
- Assume zero-mean isotropic Gaussian noise (assume outliers removed)

\[\Pr(x) = \frac{1}{2\pi\sigma^2} e^{-d(x, \bar{x})^2/(2\sigma^2)} \]

Error in both images

\[\Pr(\{x_i\}' | H) = \prod_i \frac{1}{2\pi\sigma^2} e^{-d(x_i, \bar{x}_i)^2 + d(x_i', \bar{x}_i)^2)/(2\sigma^2)} \]

Maximum Likelihood Estimate

\[\sum d(x_i, \hat{x}_i)^2 + d(x_i', \hat{x}_i')^2 \]
Mahalanobis distance

- General Gaussian case

Measurement X with covariance matrix Σ

$$\|X - \overline{X}\|_\Sigma^2 = (X - \overline{X})^T \Sigma^{-1} (X - \overline{X})$$

Error in two images (independent)

$$\|X - \overline{X}\|_\Sigma^2 + \|X' - \overline{X}'\|_{\Sigma'}^2$$

Varying covariances

$$\sum_i \|X_i - \overline{X}_i\|_{\Sigma_i}^2 + \|X'_i - \overline{X}'_i\|_{\Sigma'_i}^2$$
Next class:
Parameter estimation (continued)

Transformation invariance and normalization
Iterative minimization
Robust estimation
Upcoming assignment

- Take two or more photographs taken from a single viewpoint
- Compute panorama
- Use different measures DLT, MLE

- Use Matlab
- Due Feb. 13