Projective 3D geometry
class 4

Multiple View Geometry
Comp 290-089
Marc Pollefeys
Content

- **Background**: Projective geometry (2D, 3D), Parameter estimation, Algorithm evaluation.
- **Single View**: Camera model, Calibration, Single View Geometry.
- **Two Views**: Epipolar Geometry, 3D reconstruction, Computing F, Computing structure, Plane and homographies.
- **Three Views**: Trifocal Tensor, Computing T.
- **More Views**: N-Linearities, Multiple view reconstruction, Bundle adjustment, auto-calibration, Dynamic SfM, Cheirality, Duality
Multiple View Geometry course schedule
(subject to change)

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 7, 9</td>
<td>Intro & motivation</td>
<td>Projective 2D Geometry</td>
</tr>
<tr>
<td>Jan. 14, 16</td>
<td>(no course)</td>
<td>Projective 2D Geometry</td>
</tr>
<tr>
<td>Jan. 21, 23</td>
<td>Projective 3D Geometry</td>
<td>Parameter Estimation</td>
</tr>
<tr>
<td>Jan. 28, 30</td>
<td>Parameter Estimation</td>
<td>Algorithm Evaluation</td>
</tr>
<tr>
<td>Feb. 4, 6</td>
<td>Camera Models</td>
<td>Camera Calibration</td>
</tr>
<tr>
<td>Feb. 11, 13</td>
<td>Single View Geometry</td>
<td>Epipolar Geometry</td>
</tr>
<tr>
<td>Feb. 18, 20</td>
<td>3D reconstruction</td>
<td>Fund. Matrix Comp.</td>
</tr>
<tr>
<td>Feb. 25, 27</td>
<td>Structure Comp.</td>
<td>Planes & Homographies</td>
</tr>
<tr>
<td>Mar. 4, 6</td>
<td>Trifocal Tensor</td>
<td>Three View Reconstruction</td>
</tr>
<tr>
<td>Mar. 18, 20</td>
<td>Multiple View Geometry</td>
<td>MultipleView Reconstruction</td>
</tr>
<tr>
<td>Mar. 25, 27</td>
<td>Bundle adjustment</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 1, 3</td>
<td>Auto-Calibration</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 8, 10</td>
<td>Dynamic SfM</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 15, 17</td>
<td>Cheirality</td>
<td>Papers</td>
</tr>
<tr>
<td>Apr. 22, 24</td>
<td>Duality</td>
<td>Project Demos</td>
</tr>
</tbody>
</table>
Last week ...

line at infinity (affinities)

\[l_\infty = (0,0,1)^T \]

circular points (similarities)

\[C_\infty^* = IJ^T + JI^T \]

\[C_\infty^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[l^T C_\infty^* m = 0 \quad \text{(orthogonality)} \]
Last week ...

pole-polar relation

\[l = C x \quad x = C^* l \]

conjugate points & lines

\[y^T C x = 0 \quad m^T C^* l = 0 \]

projective conic classification

\[x^2 \pm \delta y^2 \pm \varepsilon w^2 = 0 \]

affine conic classification

Chasles’ theorem

[Diagram of conjugate points and lines with equations and conic classifications]
Fixed points and lines

\[H e = \lambda e \quad \text{(eigenvectors } H = \text{fixed points)} \]
\[(\lambda_1 = \lambda_2 \Rightarrow \text{pointwise fixed line}) \]

\[H^{-T} l = \lambda l \quad \text{(eigenvectors } H^{-T} = \text{fixed lines)} \]

![Diagram showing fixed points and lines](image)
Singular Value Decomposition

\[
A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T \quad m \geq n
\]

\[
\Sigma = \begin{bmatrix}
\sigma_1 & 0 & \cdots & 0 \\
0 & \sigma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_n \\
\end{bmatrix}
\]

\[
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0
\]

\[
U^T U = I
\]

\[
V^T V = I
\]

\[
A = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T + \cdots + U_n \sigma_n V_n^T
\]

\[
U \Sigma V^T X
\]
Singular Value Decomposition

- Homogeneous least-squares

\[
 \min \|AX\| \text{ subject to } \|X\| = 1 \quad \text{solution } X = V_n
\]

- Span and null-space

\[
 S_L = [U_1 U_2]; N_L = [U_3 U_4] \quad \Sigma = \begin{bmatrix}
 \sigma_1 & 0 & 0 & 0 \\
 0 & \sigma_2 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

- Closest rank r approximation

\[
 \tilde{A} = U\tilde{\Sigma}V^T \quad \tilde{\Sigma} = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_r, \Theta_{r+1}, \ldots, \Theta_n)
\]

- Pseudo inverse

\[
 A^+ = V\Sigma^+ U^T \quad \Sigma^+ = \text{diag}(\sigma_1^{-1}, \sigma_2^{-1}, \ldots, \sigma_r^{-1}, 0)
\]
Projective 3D Geometry

- Points, lines, planes and quadrics

- Transformations

- Π_∞, ω_∞ and Ω
3D points

3D point

\[(X, Y, Z)^T \text{ in } \mathbb{R}^3\]

\[X = (X_1, X_2, X_3, X_4)^T \text{ in } \mathbb{P}^3\]

\[X = \left(\frac{X_1}{X_4}, \frac{X_2}{X_4}, \frac{X_3}{X_4}, 1\right)^T = (X, Y, Z, 1)^T \quad (X_4 \neq 0)\]

projective transformation

\[X' = H X \quad (4 \times 4 - 1 = 15 \text{ dof})\]
Planes

3D plane

\[\pi_1 X + \pi_2 Y + \pi_3 Z + \pi_4 = 0 \]
\[\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0 \]
\[\pi^\top X = 0 \]

Euclidean representation

\[n \cdot \tilde{X} + d = 0 \quad n = (\pi_1, \pi_2, \pi_3)^\top \quad \tilde{X} = (X, Y, Z)^\top \]
\[\pi_4 = d \]
\[X_4 = 1 \]

Transformation

\[X' = H \cdot X \]
\[\pi' = H^{-\top} \pi \]

Dual: points ↔ planes, lines ↔ lines
Planes from points

Solve π from $X_1^T \pi = 0$, $X_2^T \pi = 0$ and $X_3^T \pi = 0$

$$
\begin{bmatrix}
X_1^T \\
X_2^T \\
X_3^T
\end{bmatrix} \pi = 0 \quad \text{(solve π as right nullspace of)} \quad \begin{bmatrix}
X_1^T \\
X_2^T \\
X_3^T
\end{bmatrix}
$$

Or implicitly from coplanarity condition

$$
\det \left[\begin{array}{ccc}
X_1 & (X_1)_1 & (X_2)_1 & (X_3)_1 \\
X_2 & (X_1)_2 & (X_2)_2 & (X_3)_2 \\
X_3 & (X_1)_3 & (X_2)_3 & (X_3)_3 \\
X_4 & (X_1)_4 & (X_2)_4 & (X_3)_4
\end{array} \right] = 0
$$

$$
X_1D_{234} - X_2D_{134} + X_3D_{124} - X_4D_{123} = 0
$$

$$
\pi = \left(D_{234}, -D_{134}, D_{124}, -D_{123} \right)^T
$$
Points from planes

Solve X from $\pi_1^T X = 0$, $\pi_2^T X = 0$ and $\pi_3^T X = 0$

$$\begin{bmatrix} \pi_1^T \\ \pi_2^T \\ \pi_3^T \end{bmatrix} X = 0 \quad \text{(solve X as right nullspace of)} \quad \begin{bmatrix} \pi_1^T \\ \pi_2^T \\ \pi_3^T \end{bmatrix}$$

Representing a plane by its span

$$X = M x \quad M = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} \quad \pi = (a, b, c, d)^T$$

$$\pi^T M = 0 \quad M = \begin{bmatrix} p \\ I \end{bmatrix} \quad \pi = \begin{bmatrix} -\frac{b}{a}, -\frac{c}{a}, -\frac{d}{a} \end{bmatrix}^T$$

$$p = \begin{bmatrix} \frac{b}{a} \cdot \frac{c}{a} \cdot \frac{d}{a} \end{bmatrix}^T$$
Lines

\[
W = \begin{bmatrix}
 A^T \\
 B^T
\end{bmatrix} \lambda A + \mu B
\]

\[
W^* = \begin{bmatrix}
 P^T \\
 Q^T
\end{bmatrix} \lambda P + \mu Q
\]

\[
W^* W^T = WW^* = 0_{2 \times 2}
\]

Example: X-axis

\[
W = \begin{bmatrix}
 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0
\end{bmatrix} \quad W^* = \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0
\end{bmatrix}
\]

Fig. 3.1. A line may be specified by its points of intersection with two orthogonal planes. Each intersection point has 2 degrees of freedom, which demonstrates that a line in \(\mathbb{R}^3 \) has a total of 4 degrees of freedom.
Points, lines and planes

\[M = \begin{bmatrix} W & X^T \end{bmatrix} \quad M \pi = 0 \]

\[M = \begin{bmatrix} W^* & \pi^T \end{bmatrix} \quad M X = 0 \]
Plücker matrices

Plücker matrix (4x4 skew-symmetric homogeneous matrix)

\[l_{ij} = A_i B_j - B_i A_j \]
\[L = AB^\top - BA^\top \]

1. \(L \) has rank 2 \(LW^*^\top = 0_{4 \times 2} \)
2. 4dof
3. generalization of \(l = x \times y \)
4. \(L \) independent of choice \(A \) and \(B \)
5. Transformation \(L' = HLH^\top \)

Example: x-axis

\[
L = \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} -
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]
Plücker matrices

Dual Plücker matrix L^*

\[L^* = PQ^\top - QP^\top \]

\[L^{*'} = H^{-\top}LH^{-1} \]

Correspondence

\[l_{12} : l_{13} : l_{14} : l_{23} : l_{34} = l_{12}^* : l_{13}^* : l_{14}^* : l_{23}^* : l_{34}^* \]

Join and incidence

\[\pi = L^*X \quad \text{(plane through point and line)} \]

\[L^*X = 0 \quad \text{(point on line)} \]

\[X = L\pi \quad \text{(intersection point of plane and line)} \]

\[L\pi = 0 \quad \text{(line in plane)} \]

\[[L_1, L_2, \ldots] \pi = 0 \quad \text{(coplanar lines)} \]
Plücker line coordinates

\[\mathfrak{d} = [l_{12}, l_{13}, l_{14}, l_{23}, l_{42}, l_{34}]^\top \in \mathbb{P}^5 \]

\[l_{12}l_{34} + l_{13}l_{42} + l_{14}l_{23} = 0 \quad \text{on Klein quadric} \]

\[\mathfrak{d}, \mathfrak{d} \leftrightarrow (A, B), \begin{pmatrix} \overset{\text{A}}{\text{A}} \overset{\text{B}}{\text{B}} \end{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 1 \]

\[\det[A, B, \overset{\text{A}}{\text{A}}, \overset{\text{B}}{\text{B}}] = l_{12}l_{34} + l_{13}l_{42} + l_{14}l_{23} + l_{23}l_{42} + l_{42}l_{13} + l_{34}l_{12} \]

\[= \overset{\text{K}}{\text{K}} \mathfrak{d} = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} l_{12} \\ l_{13} \\ l_{14} \\ l_{23} \\ l_{42} \\ l_{34} \end{array} \right] = 0 \]
Plücker line coordinates

\[
\begin{align*}
\langle \hat{0} | \hat{0} \rangle &= 0 \quad \text{(Plücker internal constraint)} \\
\langle \hat{0} | \hat{0} \rangle &= \det \begin{bmatrix} A, B, \hat{A}, \hat{B} \end{bmatrix} = 0 \quad \text{(two lines intersect)} \\
\langle \hat{0} | \hat{0} \rangle &= \det \begin{bmatrix} P, Q, \hat{P}, \hat{Q} \end{bmatrix} = 0 \quad \text{(two lines intersect)} \\
\langle \hat{0} | \hat{0} \rangle &= \begin{pmatrix} P^T A \end{pmatrix} \begin{pmatrix} Q^T B \end{pmatrix} - \begin{pmatrix} Q^T A \end{pmatrix} \begin{pmatrix} P^T B \end{pmatrix} = 0 \quad \text{(two lines intersect)}
\end{align*}
\]
Quadrics and dual quadrics

\(X^TQX = 0\) \(\quad\) (\(Q\) : 4x4 symmetric matrix)

1. 9 d.o.f.
2. in general 9 points define quadric
3. \(\text{det } Q = 0 \leftrightarrow\) degenerate quadric
4. pole – polar \(\pi = QX\)
5. \((\text{plane } \cap \text{ quadric}) = \text{conic}\) \(C = M^TQAM\) \(\pi : X = Mx\)
6. transformation \(Q' = H^{-T}QH^{-1}\)

\(\pi^TQ^*\pi = 0\)

1. relation to quadric \(Q^* = Q^{-1}\) (non-degenerate)
2. transformation \(Q'^* = HQ^*H^T\)
Quadric classification

<table>
<thead>
<tr>
<th>Rank</th>
<th>Sign.</th>
<th>Diagonal</th>
<th>Equation</th>
<th>Realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>(1,1,1,1)</td>
<td>$X^2 + Y^2 + Z^2 + 1 = 0$</td>
<td>No real points</td>
</tr>
<tr>
<td>2</td>
<td>(1,1,1,-1)</td>
<td>$X^2 + Y^2 + Z^2 = 1$</td>
<td>Sphere</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(1,1,-1,-1)</td>
<td>$X^2 + Y^2 = Z^2 + 1$</td>
<td>Hyperboloid (1S)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(1,1,1,0)</td>
<td>$X^2 + Y^2 + Z^2 = 0$</td>
<td>Single point</td>
</tr>
<tr>
<td>1</td>
<td>(1,1,-1,0)</td>
<td>$X^2 + Y^2 = Z^2$</td>
<td>Cone</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(1,1,0,0)</td>
<td>$X^2 + Y^2 = 0$</td>
<td>Single line</td>
</tr>
<tr>
<td>0</td>
<td>(1,-1,0,0)</td>
<td>$X^2 = Y^2$</td>
<td>Two planes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(1,0,0,0)</td>
<td>$X^2 = 0$</td>
<td>Single plane</td>
</tr>
</tbody>
</table>
Quadric classification

Projectively equivalent to sphere:

- sphere
- ellipsoid
- hyperboloid of two sheets
- paraboloid

Ruled quadrics:

- hyperboloids of one sheet

Degenerate ruled quadrics:

- cone
- two planes

Fig. 3.2. Non-ruled quadrics. This shows plots of a sphere, ellipsoid, hyperboloid of two sheets and paraboloid. They are all projectively equivalent.

Fig. 3.3. Ruled quadrics. Two examples of a hyperboloid of one sheet are given. These surfaces are given by equations $X^2 + Y^2 = Z^2 + 1$ and $XY = Z$ respectively, and are projectively equivalent. Note that these two surfaces are made up of two sets of disjoint straight lines, and that each line from one set meets each line from the other set. The two quadrics shown here are projectively (though not affinely) equivalent.

Fig. 3.4. Degenerate quadrics. The two most important degenerate quadrics are shown, the cone and two planes. Both these quadrics are ruled. The matrix representing the cone has rank 3, and the null-vector represents the nodal point of the cone. The matrix representing the two (non-coincident) planes has rank 2, and the two generators of the rank 2 null-space are two points on the intersection line of the planes.
Twisted cubic

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{pmatrix} = A \begin{pmatrix}
 1 \\
 \theta \\
 \theta^2 \\
 \theta^3 \\
\end{pmatrix} = \begin{pmatrix}
 a_{11} + a_{12} \theta + a_{13} \theta^2 + a_{14} \theta^3 \\
 a_{21} + a_{22} \theta + a_{23} \theta^2 + a_{24} \theta^3 \\
 a_{31} + a_{32} \theta + a_{33} \theta^2 + a_{34} \theta^3 \\
 a_{41} + a_{42} \theta + a_{43} \theta^2 + a_{44} \theta^3 \\
\end{pmatrix}
\]

Fig. 3.5. Various views of the twisted cubic \((t^3, t^2, t)^T\). The curve is thickened to a tube to aid in visualization.

1. 3 intersection with plane (in general)
2. 12 dof (15 for A – 3 for reparametrisation \((1 \theta \theta^2 \theta^3)\))
3. 2 constraints per point on cubic, defined by 6 points
4. projectively equivalent to \((1 \theta \theta^2 \theta^3)\)
5. Horopter & degenerate case for reconstruction
Hierarchy of transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix Representation</th>
<th>Geometric Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projective</td>
<td>$\begin{bmatrix} A & t \ v^T & v \end{bmatrix}$</td>
<td>Intersection and tangency</td>
</tr>
<tr>
<td>15dof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affine</td>
<td>$\begin{bmatrix} A & t \ 0^T & 1 \end{bmatrix}$</td>
<td>Parallellism of planes, Volume ratios, centroids, The plane at infinity π_∞</td>
</tr>
<tr>
<td>12dof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity</td>
<td>$\begin{bmatrix} s R & t \ 0^T & 1 \end{bmatrix}$</td>
<td>The absolute conic Ω_∞</td>
</tr>
<tr>
<td>7dof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euclidean</td>
<td>$\begin{bmatrix} R & t \ 0^T & 1 \end{bmatrix}$</td>
<td>Volume</td>
</tr>
<tr>
<td>6dof</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2: Geometric properties invariant to commonly occurring transformations of 3-space. The matrix A is an invertible 3×3 matrix, R is a 3D rotation matrix, $t = (t_x, t_y, t_z)^T$ a 3D translation, v a general 3-vector, s a scalar, and $\mathbf{0} = (0, 0, 0)^T$ a null 2-vector. The distortion column shows typical effects of the transformations on a cube. Transformations higher in the table can produce all the actions of the ones below. These range from Euclidean, where only translations and rotations occur, to projective where five points can be transformed to any other five points (provided no three points are collinear, or four coplanar).
Screw decomposition

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.

Fig. 3.6. **2D Euclidean motion and a “screw” axis.** (a) The frame \(\{x, y\}\) undergoes a translation \(t_\perp\) and a rotation by \(\theta\) to reach the frame \(\{x', y'\}\). The motion is in the plane orthogonal to the rotation axis. (b) This motion is equivalent to a single rotation about the screw axis \(S\). The screw axis lies on the perpendicular bisector of the line joining corresponding points, such that the angle between the lines joining \(S\) to the corresponding points is \(\theta\). In the figure the corresponding points are the two frame origins and \(\theta\) has the value 90°.
2D Euclidean Motion and the screw decomposition

screw axis // rotation axis

\[t = t_{//} + t_{\perp} \]
The plane at infinity

\[
\pi'_\infty = H_A^{-T} \pi_\infty = \begin{bmatrix} A^{-T} & 0 \\ -A t & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \pi_\infty
\]

The plane at infinity \(\pi_\infty\) is a fixed plane under a projective transformation \(H\) iff \(H\) is an affinity

1. canical position \(\pi_\infty = (0,0,0,1)^T\)
2. contains directions \(D = (X_1, X_2, X_3, 0)^T\)
3. two planes are parallel \(\Leftrightarrow\) line of intersection in \(\pi_\infty\)
4. line \(//\) line (or plane) \(\Leftrightarrow\) point of intersection in \(\pi_\infty\)
The absolute conic

The absolute conic Ω_∞ is a (point) conic on π_∞.
In a metric frame:

$$X_1^2 + X_2^2 + X_3^2 = 0$$

or conic for directions: $(X_1, X_2, X_3)I(X_1, X_2, X_3)^T$
(with no real points)

The absolute conic Ω_∞ is a fixed conic under the projective transformation H iff H is a similarity

1. Ω_∞ is only fixed as a set
2. Circle intersect Ω_∞ in two points
3. Spheres intersect π_∞ in Ω_∞
The absolute conic

Euclidean: \[\cos \theta = \frac{\left(d_1^T d_2\right)}{\sqrt{\left(d_1^T d_1\right)\left(d_2^T d_2\right)}} \]

Projective: \[\cos \theta = \frac{\left(d_1^T \Omega_\infty d_2\right)}{\sqrt{\left(d_1^T \Omega_\infty d_1\right)\left(d_2^T \Omega_\infty d_2\right)}} \]

\[d_1^T \Omega_\infty d_2 = 0 \quad (\text{orthogonality}=\text{conjugacy}) \]

Fig. 3.8. Orthogonality and \(\Omega_\infty \). (a) On \(\pi_\infty \) orthogonal directions \(d_1, d_2 \) are conjugate with respect to \(\Omega_\infty \). (b) A plane normal direction \(d \) and the intersection line \(l \) of the plane with \(\pi_\infty \) are in pole–polar relation with respect to \(\Omega_\infty \).
The absolute dual quadric

\[\Omega^*_\infty = \begin{bmatrix} I & 0 \\ 0^T & 0 \end{bmatrix} \]

The absolute conic \(\Omega^*_\infty \) is a fixed conic under the projective transformation \(H \) iff \(H \) is a similarity

1. 8 dof
2. plane at infinity \(\pi_\infty \) is the nullvector of \(\Omega^*_\infty \)
3. Angles:

\[
\cos \theta = \frac{\pi^T_1 \Omega^*_\infty \pi_2}{\sqrt{(\pi^T_1 \Omega^*_\infty \pi_1)(\pi^T_2 \Omega^*_\infty \pi_2)}}
\]
Next classes:
Parameter estimation

Direct Linear Transform
Iterative Estimation
Maximum Likelihood Est.
Robust Estimation