In-Situ Metrology

The Art of the Possible

A “Virtual Sensor” - Optical Emission Spectroscopy

• Measures concentration of various species present in plasmas
• useful in various plasma etch and plasma-enhanced deposition control applications
  – endpoint detection
  – impurity detection
  – etch rate monitoring
  – uniformity measurement
• provides real-time measurements (>1 Hz)
• simple installation on most plasma etchers
• Lets one “guess” about wafer condition, by looking at the environment around it.
OES (cont.)

• operation principle
  – plasmas contain ions, neutral radicals, energetic electrons
  – plasma discharge light
    \[ A + e \rightarrow A^* + e, \quad A^* \rightarrow A + h\nu \]
    here \( A^* \) is the excited state of particle \( A \)

• frequency of emitted light
  – depends on allowable energy transitions
  – is characteristic of species
  – sometimes there is no useful emission signature in OES (ex: \( \text{SiH}_3 \) in PECVD with silane plasma)
• optical equipment options
  – photo-detector (possibly with scanning of diffraction grating)
  – photo-diode array
  – CCD camera
  – Choice depends on number of factors
    frequency resolution, spatial resolution, acquisition rates, bandwidth, sensitivity, etc.

• Signal Processing Issues
  – OES intensities depend on several factors in addition to species concentration, such as
    Excitation probability (strongly dependent on RF power), Optical collection efficiency (drifts over time due to residue build-up on window).
  – full-spectrum OES may require data compression and noise reduction.
  – signal intensity may be too weak in small area etches (vias and contact cuts in oxide, detection of trace Cu sputter targets in Al-Cu etches, etc.)
Laser-Induced Fluorescence

- **basic idea**
  
  use a pulsed laser to excite plasma, observe induced emission
  
  laser can be tuned to cause specific excitations
  
  can detect species that have no natural emission SiH₃
  
  can detect species in ground state

- **details**
  
  Nd-YAG laser source @1064 nm used to pump tunable dye laser
  
  pulsed lasers provide much more power in short excitation phase thus emission exceeds background
  
  collection optics at 90° to source to minimize scattered light
  
  can detect and measure CF, CF₂, SiO, SiN, BCl, Cl₂⁺, ...

LIF (cont.), LAS

- **issues**
  
  - excellent spatial resolution (5 microns)
  
  - excellent temporal resolution (100nsec)
  
  - sensitivity 10⁶-10⁸ particles/cm³
  
  - complex collection optics and signal processing
  
  - more complex than OES, but much more accurate
  
  - requires side viewing port
  
  - requires actinometry for calibration
  
  - limited to species with absorption in 200-900nm range

- **other option -- Laser absorption spectroscopy**
  
  - tunable laser diode is used as source in IF range
  
  - absorption is very low here, so multiple passes are needed
  
  - path length is ~ 1Km
  
  - poorer resolution
  
  - qualitative tool
**Actinometry**

- **objective:** calibrate OES/LIF signals
- **basic idea**
  - introduce known amount of inert gas B (ex: Ar)
  - choose wavelength in inert gas emission spectrum whose excitation X-section, and excitation energy resembles species of interest A. Then,

\[
\frac{I_a(\lambda_a)}{I_b(\lambda_b)} = K \frac{N_a}{N_b}
\]

- **issues**
  - useful only for measurement *relative* species concentration
  - repeatability is a big issue: must ensure that emission lines go through same optical path, uniform temporal electron densities, etc.

- \( I_a, I_b \) measured
- \( N_i = \text{molar fraction of input gas } i \)
- \( K = \text{constant} \)

**Diffraction gratings**

- **used to spectrally resolve light**
- **operating principle**
  - close parallel lines or steps etched on a surface
  - mechanically made gratings: etched glass or plastic
  - holographically patterned gratings: higher transmission, flatter response
  - modern gratings are blazed: periodic phase shifting across grating, concentrates light energy in a specific order
- **performance characteristics**
  - peak location is at \( \sin \theta = m\lambda/d \)
  - resolving power \( R = \lambda/\Delta \lambda = Nm \)
  - dispersion \( D = \Delta \theta/\Delta \lambda = m/d \cos \theta \)
  - \( d = \text{spacing}, N = \text{number of lines}, m = \text{order} \)
  - \( \lambda = \text{wavelength of incident light}, \theta = \text{viewing angle} \)
Monochromators

- **basic idea**
  - essentially a tunable narrow-band wavelength selective optical filter
  - uses a diffraction grating
- **issues**
  - accuracy of selected wavelength
  - calibration
  - efficiency (transmission ~ 10 %)
- **Czerny-Turner monochromator**
  - grating is rotated by a stepper drive
  - angle of rotation determines wavelength of light at exit slit
- **dielectric bandpass filters**
  - fixed wavelength applications
  - transmission ~ 50 - 70 %

*Design of a Czerny-Turner monochromator. The concave collimating and refocusing mirrors are at the bottom of the monochromator. The top left and right mirrors are used to reflect light into and out of the the side slit assemblies. A photodiode array can be mounted on the top left exit port.*
Light Detectors

- **photo-multipliers**
  - very high gain photon detectors -- rely on cascading
  - resolution 0.05 photons/sec
  - spectral characteristic are adjustable by choice of material
- **photo-diode arrays**
  - can be used directly to measure intensity vs. wavelength
  - lower resolution than a monochromator with pmt
  - wider spectral coverage than monochromator with pmt
  - light strikes a multi-channel intensifier plate and emits electrons
  - DC bias accelerates electrons towards a phosphor target
  - fiber optics connect to pixels (up to 1200)
  - need to be cooled to limit thermal photo-electron emissions
  - smaller dynamic range

Photodetectors (contd.)

- **CCD arrays**
  - similar operating principle as photo-diode arrays
  - no multi-channel intensifier plate
  - wider spatial coverage
  - lower resolution
  - very inexpensive
Optical Metrology

- Probe the wafer with a beam of light
- Analyze the resulting E&M field
- Extract thickness, n and k of thin films and stacks

- Reflectometry
  - Mostly “blanket” thin film analysis

- Ellipsometry
  - Mostly “blanket” thin film analysis, more difficult setup, many more degrees of freedom to analyze.

- Scatterometry
  - Novel, analysis of periodic gratings. CD metrology and full profile reconstruction.

Reflectometry

- operating principle
  - interference between light reflected from top surface and from surfaces in underlying stack
  - intensity at detector is ~ sinusoidal in thickness of top layer and in wavelength
  - provides thickness/index/composition measurement of top layer
  - typically near-normal incidence

- applications
  - etch-rate measurement
  - develop-rate measurement
  - end-point detection

\[
Z_t = n_t \left( \frac{n_3 \cos \kappa_s \ell + jn_3 \sin \kappa_s \ell}{n_2 \cos \kappa_s \ell + jn_3 \sin \kappa_s \ell} \right)
\]

\[
\rho = \frac{Z_{t_s} - n_s}{Z_{t_s} + n_s}
\]

\[
\kappa_s = 2n_3 \sqrt{\frac{\mu_3 \ell_s}{\epsilon_s}}
\]

\[
n_3 = \sqrt{\frac{\mu_3}{\epsilon_3}}
\]
Reflectometry (contd.)

- single-wavelength
  - pulsed laser source is preferred
  - detected light is filtered at pulsing frequency to reduce noise
  - thickness accuracy +/-20Å

- spectral reflectometry
  - broad band incoherent source for scan-wavelength
  - more noisy, but can solve for more unknowns (index and composition)

- issues
  - absolute intensity measurement is hard, need to model optics
  - need underlying stack geometry and indices
  - multiple internal reflections
  - phase shifts at stack boundaries
  - surface roughness
  - patterned wafers

Clasic Off-line Reflectometer
Ellipsometry

• operating principle
  circularly polarized incident light
  TE and TM components undergo different reflections
  Fresnel reflection coefficients

\[
\begin{align*}
    r_{TE} & = \frac{n_2 \cos \phi_1 - n_1 \cos \phi_2}{n_2 \cos \phi_1 + n_1 \cos \phi_2} \\
    r_{TM} & = \frac{n_1 \cos \phi_1 - n_2 \cos \phi_2}{n_1 \cos \phi_1 + n_2 \cos \phi_2}
\end{align*}
\]

received light is elliptically polarized
Ellipsometry (contd.)

• issues
  – polarization of detected light is measured by nulling
  – no need to have intensity measurements
  – polarized light source
• comments
  – can measure 2 quantities -- typically index and film thickness
  – spectrally and spatially resolved ellipsometry
  – extremely accurate -- index +/- .1%, thickness +/- 4A
  – more expensive and delicate than reflectometry

Classic Ellipsometer
**Principle of Spectroscopic Ellipsometry**

\[ \rho = \frac{r_p}{r_s} = \tan(\Psi) \cdot e^{i(\Delta)} \]

**Measured Parameters**

\[
\text{Tan}\Psi \text{ and Cos}\Delta
\]

**Issue:** must know at least the form of the dispersion equation of material \( n = f_1(\lambda), \ k = f_2(\lambda) \).
In-situ spectroscopic ellipsometry

**FIGURE 1:** The *in situ* ellipsometer arrangement with the beam guiding system (1)

Another in-situ example...
Scatterometry

- The objective is to find a fast and economic way to characterize patterns.
- Another objective is to relieve/bypass the heavy workload of CD-SEM and CD-AFM in the fab.
- Periodic gratings can be both theoretically and experimentally characterized.

Scatterometry Principle

- Propagating orders
  \[ \sin \theta_m = \sin \theta_i + m \frac{\lambda}{D} \]
  \[ |\sin \theta_m| < 1 \]

- Evanescent orders
  \[ |\sin \theta_m| > 1 \]

- **Cut-Off Pitch**
  - 600 nm
  - 400 nm
  - 250 nm (in nm)
Specular variable angle scatterometry
-- Bio-Rad CDS1 Scatterometer

- He-Ne laser is used as light source
- Maximum incident angle is 38 degree due to the optics setup
- Simulation software only works for TE case

The ex-situ scatterometer
Rigorous Coupled Wave Analysis

- Fourier expansion of the grating profile.
- Eigensystem formulation.
- Linear system solution of E&M field.
- In theory, this approach is “rigorous”.

RCWA Accuracy

Even though we only measure the 0th order, many more orders must be considered during the theoretical analysis.

Transverse Electric: # of retained order = 31
Accuracy of RCWA (cont’d)

Transverse Magnetic
# of retained order = 41

Specular Spectroscopic Scatterometry

- We are only collecting the 0th order.
- We use Spectroscopic ellipsometry (200nm~800nm), and 1-D gratings.
Experimental Verification

- Verification of the forward diffraction grating simulation is done using given CD profiles.
- Verification of the inverse CD profile extraction is done from given Spectroscopic Ellipsometry measurements.

Focus-exposure Matrix Experiment for 1-D grating
\[ \tan \Psi \text{ of the entire F-E Matrix} \]

CD AFM Profile Segmentation

UV5:
100 layers
739.75nm

ARC:
1 layer
162.9nm
Measured and Simulated $\tan(\Psi)$ and $\cos(\Delta)$

Monte Carlo Profile Library

- Primitives
- 180000 profiles index
- 53 wavelength
- 22 layers
- 2 min/profile on a SUN Ultra 170 workstation

6000hrs
Matching on $\tan(\Psi)$ and $\cos(\Delta)$

Example of CD Profile Extraction

Blue is actual.

Red is extracted.
Profile Extraction over the entire FEM

Blue is actual.

Red is extracted.

Applicability to Future Technology

<table>
<thead>
<tr>
<th>Feature in 1997, 250nm</th>
<th>Feature in 2006, 100nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>250nm</td>
</tr>
<tr>
<td>CD$_{3\sigma}$</td>
<td>230, 250, 270nm</td>
</tr>
<tr>
<td>thickness</td>
<td>800nm</td>
</tr>
</tbody>
</table>

log(\tan(\Psi))

wavelength(nm)
Conclusions, so far

- OES is an example of a “virtual” wafer sensor.
- Reflectometry, Ellipsometry and Scatterometry can be real, in-situ, direct wafer sensors.
- Implementation and commercialization has started:
  - CMP (reflectometry)
  - furnace operations (ellipsometry, reflectometry)
  - CD-control (scatterometry on the wafer track)
  - Big issue in in-situ metrology: cost/complexity of the sensor, relationship between suppliers.

Next time: chamber and on-wafer sensors.