Control Charts for Attributes

The \(p \) (fraction non-conforming), \(c \) (number of defects) and the \(u \) (non-conformities per unit) charts. The rest of the magnificent seven.

Yield Control
The fraction non-conforming

The most inexpensive statistic is the yield of the production line.
Yield is related to the ratio of defective vs. non-defective, conforming vs. non-conforming or functional vs. non-functional.
We often measure:
• Fraction non-conforming (p)
• Number of defects on product (c)
• Average number of non-conformities per unit area (u)

The p-Chart

The p chart is based on the binomial distribution:

\[P(D = X) = \binom{n}{x} p^x (1-p)^{n-x} \quad x = 0,1,\ldots,n \]

\[\text{mean } np \]
\[\text{variance } np(1-p) \]

the sample fraction \(\hat{p} = \frac{D}{n} \)

\[\text{mean } \hat{p} \]
\[\text{variance } \frac{p(1-p)}{n} \]
The p-chart (cont.)

p must be estimated. Limits are set at +/- 3 sigma.

\[
\bar{p} = \frac{\sum_{i=1}^{m} \tilde{p}_i}{m}
\]

mean p

variance \(\frac{p(1-p)}{nm} \)

(in this and the following discussion, "n" is the number of samples in each group and "m" is the number of groups that we use in order to determine the control limits)

Designing the p-Chart

In general, the control limits of a chart are:

UCL = \(\mu + k \sigma \)
LCL = \(\mu - k \sigma \)

where k is typically set to 3.

These formulas give us the limits for the p-Chart (using the binomial distribution of the variable):

\[
\bar{p}_i = \frac{D_i}{n}, \quad i = 1,...,m (m = 20 ~ 25)
\]

p can be estimated:

\[
\bar{p} = \frac{\sum_{i=1}^{m} \tilde{p}_i}{m}
\]
"Out of control points" must be explained and eliminated before we recalculate the control limits. This means that setting the control limits is an iterative process! Special patterns must also be explained.

After the original problems have been corrected, the limits must be evaluated again.
Operating Characteristic of p-Chart

In order to calculate type I and II errors of the p chart we need a convenient statistic.

Normal approximation to the binomial (DeMoivre-Laplace).

\[P\{D = x\} = \binom{n}{x} p^x (1-p)^{(n-x)} \sim \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{(x-np)^2}{2np(1-p)}} \]

In other words, the fraction nonconforming can be treated as having a nice normal distribution! (with \(\mu \) and \(\sigma \) as given).

This can be used to set frequency, sample size and control limits. Also to calculate the OC.

Binomial distribution and the Normal

<table>
<thead>
<tr>
<th>bin 10, 0.1</th>
<th>bin 100, 0.5</th>
<th>bin 5000 0.007</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0, 1.0, 2.0, 3.0</td>
<td>35, 40, 45, 50, 55, 60</td>
<td>15, 20, 25, 30, 35, 40, 45</td>
</tr>
</tbody>
</table>
Designing the p-Chart

Assuming that the discrete distribution of x can be approximated by a continuous normal distribution as shown, then we must:

- choose n so that we get at least one defective with 0.95 probability.
- choose n so that a given shift is detected with 0.50 probability.
- or
- choose n so that we get a positive LCL.

Then, the operating characteristic can be drawn from:

$$\beta = P\{ D < n \text{ UCL /p} \} - P\{ D < n \text{ LCL /p} \}$$

The Operating Characteristic Curve (cont.)

The OCC can be calculated two distributions are equivalent and $np=\lambda$.

![Graph showing the Operating Characteristic Curve](image)

$p = 0.20,$

$LCL=0.0303,$

$UCL=0.3697$
In reality, p changes over time

(data from the Berkeley Competitive Semiconductor Manufacturing Study)

The c-Chart

Sometimes we want to actually *count* the number of defects. This gives us more information about the process.

The basic assumption is that defects "arrive" according to a Poisson model:

$$p(x) = \frac{e^{-c} c^x}{x!} \quad x = 0, 1, 2, \ldots$$

$$\mu = c, \quad \sigma^2 = c$$

This assumes that defects are independent and that they arrive uniformly over time and space. Under these assumptions:

- $UCL = c + 3 \sqrt{c}$
- center at c
- $LCL = c - 3 \sqrt{c}$

and c can be estimated from measurements.
Poisson and the Normal

Example: "Filter" wafers used in yield model
Counting particles

Scanning a “blanket” monitor wafer.
Detects position and approximate size of particle.

Scanning a product wafer
Typical Spatial Distributions

The Problem with Wafer Maps

Wafer maps contain information that is very difficult to enumerate.

A simple particle count cannot convey what is happening.
Special Wafer Scan Statistics for SPC applications

- Particle Count
- Particle Count by Size (histogram)
- Particle Density
- Particle Density variation by sub area (clustering)
- Cluster Count
- Cluster Classification
- Background Count

Whatever we use (and we might have to use more than one), must follow a known, usable distribution.

In Situ Particle Monitoring Technology

Laser light scattering system for detecting particles in exhaust flow. Sensor placed down stream from valves to prevent corrosion.

Assumed to measure the particle concentration in vacuum
Progression of scatter plots over time

The endpoint detector failed during the ninth lot, and was detected during the tenth lot.

Time series of ISPM counts vs. Wafer Scans
The u-Chart

We could condense the information and avoid outliers by using the “average” defect density \(u = \frac{\sum c}{n} \). It can be shown that \(u \) obeys a Poisson “type” distribution with:

\[
\mu_u = \bar{u}, \quad \sigma_u^2 = \frac{\bar{u}}{n}
\]

so

\[
\begin{align*}
\text{UCL} &= \bar{u} + 3\sqrt{\frac{\bar{u}}{n}} \\
\text{LCL} &= \bar{u} - 3\sqrt{\frac{\bar{u}}{n}}
\end{align*}
\]

where \(\bar{u} \) is the estimated value of the unknown of \(u \).

The sample size \(n \) may vary. This can easily be accommodated.

The Averaging Effect of the u-chart
Filter wafer data for yield models (CMOS-1):

The Use of the Control Chart

The control chart is in general a part of the feedback loop for process improvement and control.

Process

Measurement System

Input

Verify and follow up

Implement corrective action

Detect assignable cause

Identify root cause of problem

Output
Choosing a control chart...

...depends very much on the analysis that we are pursuing. In general, the control chart is only a small part of a procedure that involves a number of statistical and engineering tools, such as:

- experimental design
- trial and error
- pareto diagrams
- influence diagrams
- charting of critical parameters

The Pareto Diagram in Defect Analysis

Typically, a small number of defect types is responsible for the largest part of yield loss.

The most cost effective way to improve the yield is to identify these defect types.
Pareto Diagrams (cont)

Diagrams by Phenomena

- defect types (pinholes, scratches, shorts,...)
- defect location (boat, lot and wafer maps...)
- test pattern (continuity etc.)

Diagrams by Causes

- operator (shift, group,...)
- machine (equipment, tools,...)
- raw material (wafer vendor, chemicals,...)
- processing method (conditions, recipes,...)

Example: Pareto Analysis of DCMOS Process

Though the defect classification by type is fairly easy, the classification by cause is not...
Cause and Effect Diagrams
(Also known as Ishikawa, fish bone or influence diagrams.)

Creating such a diagram requires good understanding of the process.

An Actual Example

C. J. Spanos
Example: DCMOS Cause and Effect Diagram

Past Steps
- inspection
- calibration
- monitoring

Parametric Control
- rec. handling
- automation
- equipment

Particulate Control
- cleaning
- cassettes

Contamination Control
- chemicals
- utilities
- filters

Operator
- skill
- experience
- shift

Wafers
- handling

Handling
- loading
- boxes

Once classification by cause has been completed, we can choose the first target for improvement.

Example: Pareto Analysis of DCMOS (cont)
Defect Control

In general, statistical tools like control charts must be combined with the rest of the "magnificent seven":

- Histograms
- Check Sheet
- Pareto Chart
- Cause and effect diagrams
- Defect Concentration Diagram
- Scatter Diagram
- Control Chart

Logic Defect Density is also on the decline

1.3 - 1.5 micron CMOS process flows

\[Y = \left[(1 - e^{-AD}) / AD \right]^2 \]
What Drives Yield Learning Speed?

<table>
<thead>
<tr>
<th>RATING</th>
<th>SPC AUTOMATION</th>
<th>EXTENT OF SPC</th>
<th>PAPERLESS FAB</th>
<th>RECIPE DOWNLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>High</td>
<td>Med</td>
</tr>
<tr>
<td>High</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Med</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATING</th>
<th>YIELD MODEL</th>
<th>YIELD GRI</th>
<th>FAB REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Home</td>
<td>Away</td>
<td>Yes</td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Med</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Low</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>