Control Charts for Variables

\bar{x}-R, \bar{x}-s charts, non-random patterns, process capability estimation
Control Chart for \bar{X} and R

Often, there are two things that might go wrong in a process; its mean or its variance (or both) might change.
Statistical Basis for the Charts

A normally distributed variable x with known μ and σ, can be controlled:

average: $$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} \quad \text{with} \quad \mu \pm Z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

where $\pm Z_{\alpha}$ is the distance from μ (in # of σ), that would capture $(1 - \alpha)$% of the normal.

standard deviation: $$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 \quad \sim \quad \frac{\sigma^2 \chi^2_{(n-1)}}{n-1}$$

with:

$$\frac{\sigma^2 \chi^2_{1-\alpha/2,(n-1)}}{n-1} < s^2 < \frac{\sigma^2 \chi^2_{\alpha/2,(n-1)}}{n-1}$$

where $\chi^2_{1-\alpha/2,(n-1)}$ and $\chi^2_{\alpha/2,(n-1)}$ are the numbers that capture between them $1 - \alpha$ of the $\chi^2_{(n-1)}$ distribution.
Control Chart for \bar{x} and s
(with mean and variance known).

- **Mean Chart**
 - LCL: 0.514 (-3 σ)
 - $\mu = 0.745$
 - UCL: 0.977 (+3 σ)

- **Sigma Square Chart**
 - LCL: 0.0003
 - $\sigma^2 = 0.0038$
 - UCL: 0.0078
 - LCL: 0.0003
Statistical Basis for the Charts (cont.)

In practice we do not know the mean or the sigma. The mean can be estimated by the grand average. If the sample size is small, we can use the range to describe spread.

\[
\bar{x} = \frac{x_1 + x_2 + \ldots + x_m}{m}
\]

\[
R = x_{\text{max}} - x_{\text{min}}
\]

Range \(R \) is related to the sigma in terms of a constant (depending on sample size) that is listed in statistical tables:

\[
\bar{R} = \frac{R_1 + R_2 + \ldots + R_m}{m}
\]

\[
\hat{\sigma} = \frac{\bar{R}}{d_2}
\]
Statistical Basis for the Charts (cont.)

The control limits for the \bar{x}-R chart are as follows:

$$UCL = \bar{x} + A_2 \bar{R}$$
$$\text{center at } \bar{x}$$
$$LCL = \bar{x} - A_2 \bar{R}$$

$$UCL = R \cdot D_4$$
$$\text{center at } R$$
$$LCL = R \cdot D_3$$

$$A_2 = \frac{3}{d_2 \sqrt{n}}$$
$$D_{3,4} = 1 \pm 3 \frac{d_3}{d_2}$$

(d_2 and d_3 are tabulated constants that depend on n)
Range and Mean charts for Photoresist Control

Range

n=5 and from table, $D_3=0.0$ and $D_4=2.11$. Average Range is 239.4, so the range center line is 239.4, the LCL is 0.0 and the UCL is 507.1. These control limits will give us the equivalent of 3 sigma control. ($\alpha = 0.0027$).

\bar{x}

The global average is 7832.9 and from table, A_2 is 0.577, so LCL is 7694.5 and UCL is 7971.3. These control limits will give us 3 sigma control. ($\alpha = 0.0027$).
Example: Photoresist Coating (cont)

Range and \bar{x} chart for all wafer groups.

Range Chart
- UCL = 507.1
- LCL = 0.0
- Range values: 0, 239.9

Mean Chart
- UCL = 7971.3
- LCL = 7694.5
- Mean values: 7832.9, 7800, 7700, 7600, 0, 10, 20, 30, 40 (Wafer Groups)
The Grouping of The Parameters is Crucial

Known as *rational subgrouping*, the choice of grouping is very important.

In general, only *random* variation should be allowed within the subgroup.

(i.e. grouping wafers within the boat of a diffusion tube is inappropriate - gas depletion effect is systematic.)

The range of the appropriate group should be used to estimate the variance of the process.

(i.e. the range across a lot should not be used to estimate the variance of a parameter measured between lots - *within* lot statistics are different from *between* lot statistics).
Rational Subgrouping

Rule of thumb: use only groups with **IIND** data, if possible. (Independently, Identically, Normally Distributed).

The natural grouping of semiconductor data might not lead to IIND subgroups!
Example: charts for line-width control

Range Chart, n=5 D3=0.0, D4=2.114

X chart, n=5, A2=0.577

what is the problem?

Lot No
Rational Subgrouping (cont.)

Remember, we are using R to estimate the global sigma. The rational subgroups we chose might bias this estimation.

In this case, the within lot variation is much less than the global variation.

If we estimate the sigma from the global range, we get:

If this looks too good, it might be because of the "mixture" patterns in it!
Specification Limits vs. Control Limits

The specification limits of a process reflect our need. These limits are set by the management as objectives.

The control limits of a process tell us what the process can do when it is operating properly. These limits are set by the quality of the machinery and the skills of the operators.

Process Capability is a figure of merit that tells us whether a process is suitable for our manufacturing objectives.
Process Capability

Process specifications and control limits are, in general, different concepts.

A process might be in control without meeting the specs, or might be meeting the specs without being in control...

process improvement
Process Capability Estimation

Calculate what the process (when in control) can do and compare it with specifications.

A control chart provides good estimates of σ, so it can be used for process capability evaluation.

Process Capability Ratio (PCR, C_p)

$$C_p = \frac{(USL-LSL)}{6 \sigma}$$

Example

The line-width control data show a process capability of 1.08, since the specs for DLN are .5 to 1.0 µm and σ is .077.

The symbol C_{PK} is used for the process capability when the spec limits are not symmetrical around the process spread:

$$C_{PK} = \min \{ \frac{(USL-x)}{3\sigma}, \frac{(x-LSL)}{3\sigma} \}$$
Process Capability (cont)

\[Cp = \frac{(USL-LSL)}{6 \sigma} \]

\[C_{pk} = \min \{ \frac{(USL-x)}{3\sigma}, \frac{(x-LSL)}{3\sigma} \} \]
Never Mix Specification and Control Limits!
Only individuals should be plotted against the specs...

Relationship of natural tolerance, control and spec limits:
Never Attempt to Estimate Cp or Cpk from small groups!

Plot of CP estimate, n=5 (true CP=0.67)
Special patterns in charts

While a point outside the control limits is a good indicator of non-randomness, other patterns are possible:

- Cyclic (periodic signal)
- Mixtures (two or more sources)
- Shifts (abrupt change)
- Trends (gradual change)
- Stratification (variability too small)

Additional rules can be used to detect them. (Watch for an increase in false alarm rates).
Special Patterns

Cycles on a control chart.

A mixture pattern.

Trend.
The Western Electric Rules

1. Any point beyond 3σ UCL or LCL.
2. 2/3 cons. points on same side, in A or beyond
3. 4/5 cons. points on same side, in B or beyond.
4. 9/9 cons. points on same side of center line.
5. 6/6 cons. points increasing or decreasing.
6. 14/14 cons. points alternating up and down.
7. 15/15 cons. points on either side in zone C.
Robustness of the \bar{x}-R control chart

So far we have assumed that our process is fluctuating according to a normal distribution:

$$X \sim N(\mu, \sigma^2)$$

This assumption is not important for the \bar{x} chart (thanks to the central limit theorem).

The R chart is much more sensitive to this assumption. If the underlying distribution is not normal, watch for signs of correlation between x and R.
The \bar{x}-R Operating Characteristic Function

What is the probability of not detecting a shift of μ by $k \sigma$?

$$\beta = \Phi \left[\frac{\text{UCL}-(\mu_0+k \sigma)}{\sigma / \sqrt{n}} \right] - \Phi \left[\frac{\text{LCL}-(\mu_0+k \sigma)}{\sigma / \sqrt{n}} \right]$$

or, for 3σ control limits:

$$\beta = \Phi (3 - k \sqrt{n}) - \Phi (-3 - k \sqrt{n})$$

The probability that the shift will be detected on the m^{th} sample is:

$$\beta^{m-1}(1 - \beta)$$

And the average number of samples that we need for detecting this shift is:

$$\text{ARL} = \frac{1}{1 - \beta}$$

also known as the **Average Run Length**
The \bar{X}-R Operating Characteristic Function (cont.)
The \bar{x}-R Operating Characteristic Function (cont.)

The OC for the R part of the chart shows that it cannot catch small shifts in sigma:

\[
\lambda = \sigma_1 / \sigma_0, \text{ ratio of new to old process standard deviation}
\]
\(\bar{x} - s \) control charts

When \(n \) is larger (> 10), then using the standard deviation \(s \) gives better results. Although \(s^2 \) is a good, *unbiased* estimator of the variance,

\[
\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}
\]

\(s \) is a *biased* estimator of sigma. A correction factor is a function of \(n \) and can be found in tables. In summary:

\[
s = \frac{1}{m} \sum_{i=1}^{m} s_i \text{ and } s_{\text{unb. estim of sig}} = \frac{s}{C_4}
\]

\[
CL_s = B_{3,4} s \quad B_{3,4} = 1 \pm \frac{3}{C_4} \sqrt{1 - C_4^2}
\]

\[
CL_{\bar{x}} = \bar{x} \pm A_3 s \quad A_3 = \frac{3}{C_4 \sqrt{n}}
\]
\(\bar{x} \) and \(s \) Control Charts (when \(n \) is large)

- **S Chart, assuming \(\sigma = 0.06 \)**
 - \(B_5 = 0.276, B_6 = 1.669 \) for \(n = 10 \)
 - LCL: 0.017
 - S: 0.053
 - UCL: 0.100

- **S Chart, no standard**
 - \(B_3 = 0.281, B_4 = 1.716 \) for \(n = 10 \)
 - LCL: 0.015
 - S: 0.053
 - UCL: 0.091
The control limits for \bar{x} can now be calculated from s.

\[S = 0.053, \ n = 10, \ A_3 = 0.975 \]
Control Charts for Individual Units
Moving Range chart for Temp. Control:
Moving Range Graph, n=2, $D_3=0.0$, $D_4=3.267$

Temp Samples, n=2, $d_2=1.128$

LCL 0.0
UCL 3.92
1.16
LCL 0.0
UCL 3.2e+0
4.5e-1
LCL -3.19e+0

Lecture 12: Control Charts for Variables
Questions Most Frequently Asked

Q How many points are needed to establish control limits?
A Typically 20-30 in-control points will do.

Q How do I know whether points are in-control if limits have not been set?
A Out-of-control points should be: a) explained and excluded. b) left in the graph if cannot be explained.

When done, we should have about 1/ARL unexplained out-of-control points (for 3σ control ~1/370 samples.) These points are accepted as false alarms.

Q How often limits must be recalculated?
A Every time it is obvious from the chart that the process has reached a new, acceptable state of statistical control.
Choosing the proper control chart

Variables
- new process or product
- old process with chronic trouble
- diagnostic purposes
- destructive testing
- very tight specs
- decide adjustments

Attributes
- reduce process fallout
- multiple step process evaluation
- cannot measure variables
- historical summation of the process

Individuals
- physically difficult to group
- full testing or auto measurements
- data rate too slow
Summary, so far

• Continuous variables need two (2) charts:
 – chart monitoring the mean
 – chart monitoring the spread
• Rational subgrouping must be done correctly.
• Charts are using Control Limits - Spec limits are very different (conceptually and numerically).
• The concept of process capability brings the two sets of limits together.
• A chart is a hypothesis test. It suffers from type I and type II errors.
• Violating the control limits is just one type of alarm, out of many.
SPC

Calculations for Control Limits

Notation:
- UCL — Upper Control Limit
- LCL — Lower Control Limit
- CL — Center Line
- \(n \) — Sample Size
- PCR — Process Capability Ratio
- \(\bar{x} \) — Average of Measurements
- \(\bar{A}_2 \) — Average of Averages
- \(R \) — Range
- \(\bar{R} \) — Average of Ranges
- USL — Upper Specification Limit
- LSL — Lower Specification Limit

Variables Data (\(\bar{x} \) and \(R \) Control Charts)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(A_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
<th>(d_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.880</td>
<td>0.000</td>
<td>3.267</td>
<td>1.128</td>
</tr>
<tr>
<td>3</td>
<td>1.023</td>
<td>0.000</td>
<td>2.574</td>
<td>1.693</td>
</tr>
<tr>
<td>4</td>
<td>0.629</td>
<td>0.000</td>
<td>2.282</td>
<td>2.059</td>
</tr>
<tr>
<td>5</td>
<td>0.577</td>
<td>0.000</td>
<td>2.114</td>
<td>2.326</td>
</tr>
<tr>
<td>6</td>
<td>0.483</td>
<td>0.000</td>
<td>2.004</td>
<td>2.534</td>
</tr>
<tr>
<td>7</td>
<td>0.419</td>
<td>0.076</td>
<td>1.924</td>
<td>2.704</td>
</tr>
<tr>
<td>8</td>
<td>0.373</td>
<td>0.136</td>
<td>1.864</td>
<td>2.847</td>
</tr>
<tr>
<td>9</td>
<td>0.337</td>
<td>0.184</td>
<td>1.816</td>
<td>2.970</td>
</tr>
<tr>
<td>10</td>
<td>0.308</td>
<td>0.223</td>
<td>1.777</td>
<td>3.078</td>
</tr>
</tbody>
</table>

Capability Study

\[C_p = (USL - LSL)/6\bar{\sigma}; \] where \(\bar{\sigma} = \bar{R}/d_2 \)

Attribute Data (\(p \), \(np \), \(c \), and \(u \) Control Charts)

<table>
<thead>
<tr>
<th>Control Chart Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p) (fraction)</td>
</tr>
<tr>
<td>CL</td>
</tr>
<tr>
<td>UCL</td>
</tr>
<tr>
<td>LCL</td>
</tr>
</tbody>
</table>

Notes
- If \(n \) varies, use \(\bar{n} \) or individual \(n_i \)
- \(n \) must be a constant
- If \(n \) varies, use \(\bar{n} \) or individual \(n_i \)
- \(\bar{p} \) or \(\bar{c} \) or \(\bar{u} \) are constants
<table>
<thead>
<tr>
<th>Observations in Sample, n</th>
<th>Chart for Averages</th>
<th>Chart for Standard Deviations</th>
<th>Chart for Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factors for Control Limits</td>
<td>Factors for Center Line</td>
<td>Factors for Control Limits</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A_2</td>
<td>A_3</td>
</tr>
<tr>
<td>2</td>
<td>2.121</td>
<td>1.880</td>
<td>2.659</td>
</tr>
<tr>
<td>3</td>
<td>1.732</td>
<td>1.023</td>
<td>1.954</td>
</tr>
<tr>
<td>4</td>
<td>1.500</td>
<td>0.729</td>
<td>1.628</td>
</tr>
<tr>
<td>5</td>
<td>1.342</td>
<td>0.577</td>
<td>1.427</td>
</tr>
<tr>
<td>6</td>
<td>1.225</td>
<td>0.483</td>
<td>1.287</td>
</tr>
<tr>
<td>7</td>
<td>1.134</td>
<td>0.419</td>
<td>1.182</td>
</tr>
<tr>
<td>8</td>
<td>1.061</td>
<td>0.373</td>
<td>1.099</td>
</tr>
<tr>
<td>9</td>
<td>1.000</td>
<td>0.337</td>
<td>1.032</td>
</tr>
<tr>
<td>10</td>
<td>0.949</td>
<td>0.308</td>
<td>0.975</td>
</tr>
<tr>
<td>11</td>
<td>0.905</td>
<td>0.285</td>
<td>0.927</td>
</tr>
<tr>
<td>12</td>
<td>0.866</td>
<td>0.266</td>
<td>0.886</td>
</tr>
<tr>
<td>13</td>
<td>0.832</td>
<td>0.249</td>
<td>0.850</td>
</tr>
<tr>
<td>14</td>
<td>0.802</td>
<td>0.235</td>
<td>0.817</td>
</tr>
<tr>
<td>15</td>
<td>0.775</td>
<td>0.223</td>
<td>0.789</td>
</tr>
<tr>
<td>16</td>
<td>0.750</td>
<td>0.212</td>
<td>0.763</td>
</tr>
<tr>
<td>17</td>
<td>0.728</td>
<td>0.203</td>
<td>0.739</td>
</tr>
<tr>
<td>18</td>
<td>0.707</td>
<td>0.194</td>
<td>0.718</td>
</tr>
<tr>
<td>19</td>
<td>0.688</td>
<td>0.187</td>
<td>0.698</td>
</tr>
<tr>
<td>20</td>
<td>0.671</td>
<td>0.180</td>
<td>0.680</td>
</tr>
<tr>
<td>21</td>
<td>0.655</td>
<td>0.173</td>
<td>0.663</td>
</tr>
<tr>
<td>22</td>
<td>0.640</td>
<td>0.167</td>
<td>0.647</td>
</tr>
<tr>
<td>23</td>
<td>0.626</td>
<td>0.162</td>
<td>0.633</td>
</tr>
<tr>
<td>24</td>
<td>0.612</td>
<td>0.157</td>
<td>0.619</td>
</tr>
<tr>
<td>25</td>
<td>0.600</td>
<td>0.153</td>
<td>0.606</td>
</tr>
</tbody>
</table>

For $n > 25$.

$$A = \frac{3}{\sqrt{n}}$$ \quad $$A_3 = \frac{3}{c_4 \sqrt{n}}$$ \quad $$c_4 = \frac{4(n-1)}{4n-3}$$

$$B_3 = 1 - \frac{3}{c_4 \sqrt{2(n-1)}}$$ \quad $$B_4 = 1 + \frac{3}{c_4 \sqrt{2(n-1)}}$$

$$B_5 = c_4 - \frac{3}{\sqrt{2(n-1)}}$$ \quad $$B_6 = c_4 + \frac{3}{\sqrt{2(n-1)}}$$

Intro to SQC 5th Edition, D. Montgomery