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What are these?
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GCC 4.1 target processors [Wikipedia]



What is this?

Front-end

Optimizations
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Back-end



Structure of GCC [Wikipedia]

Front-end

Optimizations

Back-end
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Back-end



Design (programming)
vs.
implementation (compilation)

• Design:
– Focus on function: what should the program do and how to do it
– Focus on correctness: debugging does/should not depend on whether 

program runs on Linux/Windows, AMD/Intel
– Focus on readability, extensibility, maintainability, …: others will come 

after you to work on this program
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after you to work on this program
– (Try to) avoid thinking about how to make it run fast (except high-level 

decisions, e.g., which data-structure to use)

• Implementation:
– Focus on how to execute the program correctly on a given architecture: 

compiler knows the instruction set, programmer does not
– Make it run fast: compiler knows some of that



Embedded software

• This is more or less true for “general-purpose” 
software…

• …but certainly not for embedded software!
– Lots of worries due to limited resources: small memory, little 
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– Lots of worries due to limited resources: small memory, little 
power, short time to complete task, …

• Will it ever be?

• We believe so.



Model based design: what and why?

Simulink
Stateflow UML

Application

design …
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single-processor
single-task single-processor

multi-task
multi-processor

TTA

Execution platform

CAN

implementation

…



Model based design: benefits and challenges

• Benefits:
– Increase level of abstraction => ease of design
– Abstract from implementation details => platform-independence
– Earlier verification => bugs cheaper to fix
– Design space exploration (at the “algorithmic” level)
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– Consistent with history (e.g., of programming languages)

• Challenges:
– High-level languages include powerful features, e.g.,

• Concurrency, synchronous (“0-time”) 
computation/communication,…

– How to implement these features?
• Do we even have to?



Model based design – the Verimag approach
(joint work with P. Caspi, C. Sofronis, A. Curic, A . Maignan, at Verimag)

Simulink
Stateflow UML

Application

design

validation
[EMSOFT’03]

[EMSOFT’04]

…

9

single-processor
single-task single-processor

multi-task
multi-processor

TTA

Lustre

Execution platform

CAN

implementation

validation
verification

[ECRTS’04,EMSOFT’05,’06]
[LCTES’03]

[classic]

…



Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution 
• a general solution

– Implementation on a distributed platform:
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– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre
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– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
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Code generation: single-processor, single-task

• Code that implements a state machine:

step function
(transition)

inputs outputs
initialize;
repeat forever

await trigger
read inputs;
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memory
(state)

read inputs;
compute next state

and outputs;
write outputs;
update state;

end repeat;



Single-processor, single-tasking (1)

• One computer, no RTOS (or minimal), one process running
• Process has the following structure:

initialize state;
repeat forever
await trigger;
read inputs;
compute new state and outputs;
update state;

A

B

C
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• Trigger may be periodic or event-based
• Compute = “fire” all blocks in order (no cycles are allowed)
• Some major issues:

– Estimate WCET (worst-case execution time)
• “Hot” research topic, some companies also (e.g., AbsInt, Rapita, …)

– Check that WCET <= trigger period (or minimum inter-arrival time)

update state;
write outputs;

end repeat;
a   := A(inputs);
c   := C(inputs);
out := B(a, c);



Single-processor, single-tasking (2)

• One computer, no RTOS (or minimal), one process running
• Process has the following structure:

initialize state;
repeat forever
await trigger;
write (previous) outputs;   /* reduce jitter */
read inputs;
compute new state and outputs;
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• Other major issues:
– Move from floating-point to fixed-point arithmetic
– Evaluate the effect of jitter in outputs
– Program size vs. memory (more/less “standard” compiler optimizations)
– Handling causality cycles (dependencies within the same synchronous instant)
– Modular code generation
– …

compute new state and outputs;
update state;

end repeat;



To go further:

• Reinhard von Hanxleden’s course slides:
– http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ws05-06/v-synch/skript.html#lecture14

• Pascal Raymond’s course slides (in French):
– http://www-verimag.imag.fr/~raymond/edu/compil-lustre.pdf
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– http://www-verimag.imag.fr/~raymond/edu/compil-lustre.pdf

• “Compiling Esterel” book by Potop-Edwards-Berry 
(2007)



Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution 
• a general solution

– Implementation on a distributed platform:
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– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre



Code generation: single-processor, multi-task

• Multiple processes (tasks) running on the same 
computer

• Communicating by share memory (+some protocol)
• Real-time operating system (RTOS) handles scheduling

Mem
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RTOS

I/O drivers, etc.

MemT1 T2 T3 …

Question: why bother with multi-tasking? (since we could do single-task)



Code generation: single-processor, multi-task

• Multiple processes (tasks) running on the same 
computer

• Real-time operating system (RTOS) handles scheduling:
– Usually fix-priority scheduling:

• Each task has a fixed priority, higher-priority tasks preempt lower-
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• Each task has a fixed priority, higher-priority tasks preempt lower-
priority tasks

– Sometimes other scheduling policies
• E.g., EDF = earliest deadline first

• Questions:
– Why bother with single-processor, multi-tasking?
– What are the challenges?



B B

Single-processor, multi-tasking: why bother?

• Why bother?
– For multi-rate applications: blocks running at different rates (triggers)
– Example: block A runs at 10 ms, block B runs at 40 ms
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A B A A A A B

A B… A A A A

A
B

A A A A
B

A

A

AB B… B

Ideally

Single-tasking

Multi-tasking

? ?

B is preempted B is preempted

WHAT IF TASKS COMMUNICATE?



Single-processor, multi-tasking issues

• Fast-to-slow transition (high-to-low priority) problems:
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1 register

* Figures are cut-and-pasted from RTW User’s Guide

What would be the standard solution to this?



Single-processor, multi-tasking issues

• Fast-to-slow transition (high-to-low priority) problems:
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• RTW solution:
– RT block
– High priority
– Low rate

2 registers

Bottom-line: reader copies value locally when it starts



Does it work in general? Is it efficient?

• Not general: 
– Limited to periodic (in fact harmonic) arrival times
– Fails for general (e.g., event-triggered) tasks

• See examples later in this talk

• Not efficient:
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• Not efficient:
– Copying large data can take time…
– What if there are many readers? Do they need to keep multiple 

local copies of the same data?



A better, general solution [ECRTS’04, EMSOFT’05,’06, TECS]

• The Dynamic Buffering Protocol (DBP)
– Synchronous semantics preservation
– General: applicable to any arrival pattern

• Known or unknown
• Time- or event- triggered

– Memory optimal in all cases
– Known worst case buffer requirements (for static allocation)
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– Known worst case buffer requirements (for static allocation)

• Starting point: abstract synchronous model
– Set of tasks
– Independently triggered
– Communicating
– Synchronous (“zero-time”) semantics



The model:
an abstraction of Simulink, Lustre, etc.

• A set of communicating tasks
• Time- or event-triggered
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T1

T3

T2

T4

T5



The model: semantics

• Zero-time => “freshest” value
T1

T

T2

T

T5
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time

T3T1 T1T3 T2 T4

T3 T4



Execution on a real platform

• Execution takes time
• Pre-emption occurs T1

T

T2

T

T5
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time

T3T1 T1T3 T2 T4

T1 pre-empts T3

T3 T4



Assumption : schedulability

• When a task arrives, all previous instances have finished execution.

T1 T1
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• How to check schedulability?  Use scheduling theory!
• (will have to make assumptions on task arrivals)

time
Not schedulable



Issues with a “naïve” implementation (1)

• Static-priority, T2 > T1

T1 T2

Ideal:

T1 T2T1
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Real:

T1 T2T1
T1 is pre-empted.
T2 gets the wrong value.

(*) “naïve” = atomic copy locally when task starts



Issues with a “naïve” implementation (1)

• Static-priority, T2 > T1

T1 T2

Ideal:

T1 T2T1

pre
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• Assumption: if reader has higher priority than writer, then there is a 
unit-delay (“pre”) between them.

• (RTW makes the same assumption)



Issues with a “naïve” implementation (2)

A B

Q

ideal semantics
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A

Q

B
A



Issues with a “naïve” implementation (2)

Q PrioQ > PrioA > PrioB

A Breal implementation
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A

Q

B
A

A
Q

A B

ERROR



The DBP protocols

• Basic principle:
– “Memorize” (implicitly) the arrival order of tasks

• Special case: one writer/one reader
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• Special case: one writer/one reader

• Generalizable to one writer/many readers (same data)

• Generalizable to general task graphs



One writer/one reader (1)

• Low-to-high case:

– L keeps a double buffer   B[0,1 ]

– Two bits: current , previous

– L writes to:           B[current ]

– H reads from:       B[previous ]

L H
pre
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– When L arrives:    current := not current

– When H arrives:   previous := not current

– Initially: current = 0, B[0 ]= B[1 ]= default



One writer/one reader (2)

• High-to-low case:

– L keeps a double buffer   B[0,1 ]

– Two bits: current , next

– H writes to:           B[next ]

– L reads from:        B[current ]

H L
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– When L arrives:   current := next

– When H arrives:   if (current = next) then 

– Initially: current=next=0, B[0 ]= B[1 ]= default

next := not next



“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB
A B
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A

next

A

y1



“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB

Q

A B
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A

Q

B

A
Q

next

y1

current



“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB

Q

A B
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A

Q

B A

A
Q

A

current

y1

next

y2



“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB

Q

A B
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A

Q

B A

A
Q

A

current

y1

next

y2

B



Dynamic Buffering Protocol (DBP)

• N1 lower priority readers
• N2 lower priority readers with unit-delay
• M higher priority readers (with unit-delay by default)

• unit-delay a delay to preserve the semantics
– Read the previous input
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– Read the previous input



The DBP protocol (1)

• Data structures: 
– Buffer array:       B[1..N+2] // stores the real data

– Pointer array:     H[1..M]   // for higher-priority readers

– Pointer array:     L[1..N]   // for lower-priority readers

– Two pointers:     current, previous
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• Writer
– Release: 

previous := current

current  := some j ∈[1..N+2] such that B[j] is “free”

– Execution: 
write on    B[current]



The DBP protocol (2)

• Lower-priority reader (without unit delay)
– Release

if unit-delay  L[i] := previous

else              L[i] := current

– Execution: 
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read from B[L[i]]

• Higher-priority reader (with unit delay)
– Release 

H[i] := previous

– Execution
read from B[H[i]]



Example of usage of DBP

τw τlow
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currprev

y0 y1



Example of usage of DBP

τw τlow τw
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currprev

y0 y1 y2



Example of usage of DBP

τw τlow τw τw

τhi
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curr prev

y3 y2y1



Savings in memory

• One writer � one reader : 14 buffers

• DBP
– τ1 2  buffers
– τ 4  buffers
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– τ3 4  buffers
– τ4 2  buffers

• Total: 8 buffers



Worst case buffer consumption

• DBP never uses more than N1+N2+2 buffers
– N1 lower priority readers
– N2 lower priority readers with a unit-delay
– M higher priority readers (only contribute at most 1 buffer)
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Optimality 

• DBP is memory optimal in any arrival execution
• Let ρ be some execution

– Maybeneeded( ρ,t)
• Used now
• May be used until next execution of the writer

– DBP_used( ρ,t)
• buffers used by the DBP protocol
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• buffers used by the DBP protocol

• Theorem: for all ρ, t 
DBP_used( ρ,t) ⊆ maybeneeded( ρ,t)



Optimality for known arrival pattern

• DBP is non-clairvoyant
– Does not know future arrivals of tasks
– => it may keep info for a reader that will not arrive until the next 

execution of the writer: redundant

• How to make DBP optimal when task arrivals are known?
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– E.g.: multi-periodic tasks

• Two solutions: 
– Dynamic: for every writer, store output only if it will be needed (known 

since, readers’ arrivals are known)
– Static: Simulate arrivals tasks until hyper-period (if possible)

• Standard time vs. memory trade-off



Conclusions and perspectives (part I)

• Dynamic Buffering Protocol
– Synchronous semantics preservation
– Applicable to any arrival pattern 

• Known or unknown
• Time or event triggered

– Memory optimal in all cases
– Known worst case buffer requirements (for static allocation)
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• Relax schedulability assumption
• More platforms (in the model based approach)

– CAN, Flexray, …
• Implement the protocols and experiment

• BIG QUESTION: how much does all this matter for control???
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– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre



General concerns

• What semantics to preserve?
– Sequence of values? Synchronism? Both? None?

• How to achieve real-time constraints?

• How to distribute computation on the execution nodes?
• How to distribute communication?
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• How to distribute communication?
• How to solve computation/communication trade-offs?

– E.g., duplicate computation to avoid communication

• How to achieve fault-tolerance?

• And many, many more: 
– Local and end-to-end scheduling, SW architecture, buffer sizing, …
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– Implementation on a distributed platform:
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Kahn Process Networks [G. Kahn, “The semantics of a 
simple language for parallel programming”, 1974]

• A network of processes:
– A, B, C, D are processes
– X, Y, U, V, W are channels of the network

• What is a network?
– Point-to-point channels between processes

A

B

C D

XY

U V

W
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– Point-to-point channels between processes
– Each channel is a lossless, FIFO queue of unbounded length
– No other means of communication between processes

• What is a process?
– A sequential program (could be written in C, C++, etc.)
– Uses “wait” (blocking read) and “send” (non-blocking write) 

primitives to receive/send data from/to its input/output channels



Example of process

A

B

C D

XY

U V
Process A(integer in X, Y; integer out W)
Begin

integer i;

W
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integer i;
boolean b := true;
while (true) do
i := if b then wait(X) else wait(Y);
send i on W;
b := not b;

end while;
End.



Main results of Kahn

• The behavior of a KPN is deterministic:
– It does not depend on the execution order of processes (modeling 

execution speed, transmission delays, …)
– Behavior = sequences of input/output values of each process

• How to prove it:
– View each channel as carrying a (finite or infinite) sequence of values
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– View each channel as carrying a (finite or infinite) sequence of values
– Order sequences by prefix-order
– Set of sequences is then a CPO (bottom is the empty sequence)
– Then:

• Kahn processes are continuous functions in this CPO
• Network is a set of fix-point equations on these functions
• (From continuity) the set of equations has a (unique) least fixpoint
• This least fixpoint is the semantics



Example of fixpoint equations

A

B

C D

XY

U V

W
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W     = A(X,Y)
(U,V) = B(W)
Y     = C(U)
X     = D(V)



Questions – take as homework!

• Kahn processes and continuous functions
– Why are Kahn processes continuous functions?
– What processes would not be continuous?
– E.g., suppose we had a new primitive: wait-either(X,Y) that blocks until 

a value is received on EITHER of X, Y. Would processes still be 
continuous? Can you think of other primitives that could make 
processes non-continuous?

– Are there “good” (continuous, other) functions not expressed as Kahn 
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– Are there “good” (continuous, other) functions not expressed as Kahn 
processes?

• How to implement synchronous programs on KPN?
– E.g., take Lustre programs
– Suppose the program is a “flat” network of nodes
– Suppose each Lustre node is to be mapped into a separate Kahn 

process
– What next?
– What semantics does your implementation method preserve?
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– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre



TTA: the Time Triggered Architecture [Kopetz et al]

• A distributed, synchronous, fault-tolerant architecture
– Distributed: set of processor nodes + bus

– Time-triggered:
• static TDMA bus access policy

• clock synchronization

– Fault-tolerant: membership protocol built-in

– Precursor of FlexRay
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From Lustre to TTA

• The good news:
– TTA is synchronous
– No problems of clock synchronization
– Synchronous semantics of Lustre can be preserved

• The bad news: non-trivial resource-allocation problems
– Decomposition of Lustre program into tasks
– Mapping of tasks to processors
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– Mapping of tasks to processors
– Scheduling of tasks and messages
– Code (and glue code) generation

• Auxiliary (difficult) problem:
– WCET analysis

• To “help” the compiler: Lustre extensions (“pragmas”) [LCTES’03]
– Real-time primitives (WCET, deadlines, …)
– Distribution primitives (user-defined mapping)



Decomposition

Lustre program:
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Decomposition

Lustre program:
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Should the
entire node B
be one task?



Decomposition

Lustre program:
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Or should there
be two tasks
B1 and B2 ?



Decomposition

Lustre program:
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Or some other
grouping ?



Decomposition

• Two extremes:
– One task per processor: cheap but too coarse

• perhaps no feasible schedule (pre-emption not allowed).

– One task for every Lustre operator: fine but too costly
• too many tasks, combinatorial explosion.

• Our approach:
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• Our approach:
– Start with coarse partition.
– Refine when necessary: feedback.
– Feedback: heuristics

• Split task with largest WCET
• Split task that blocks many others
• ...
• (unpublished, in PhD thesis of Adrian Curic)

Decomposition

Mapping/Scheduling

Code generation



Scheduling

• Schedule tasks on each processor.
• Schedule messages on the bus.

• Static TDMA schedules (both for bus and processors).
• No pre-emption.
• TTA-specific constraints.
• Problem NP-hard.
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• Problem NP-hard.

• Algorithm:
– Branch-and-bound to fix order of tasks/messages.
– Solve a linear program on leaves to find start times.
– Ensures deadlines are met ∀ possible execution time.



Scheduling algorithm

T1 → T4, T3 → T5

T4 → T3
T3 → T4
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T1 → T2

LP

Infeasible
(necessary
conditions
violated)

total order



Tool chain

SS2Lus

Simulink/Stateflow model (.mdl file)

Lustre program (.lus file)

Lustre program + annotations

C compiler

C code

OSEK executables
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Lustre program + annotations

: currently manual

Decomposer

Scheduler Integrator

C code generator

Tasks + constraints

Global schedule
(bus + processors)

Lustre modules
+ task mapping

Glue code

C code

fe
ed

b
ac

k

: on-going work



Case studies

• Two case studies from Audi.
– A warning-filtering system:

• 6 levels, 20 subsystems, 113 total blocks.
• 800 lines of generated Lustre code.

– An autonomous steer-by-wire application:
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– An autonomous steer-by-wire application:
• 6 levels, 18 subsystems, 157 total blocks.
• 387 lines of generated Lustre code.
• Demo-ed in final NEXT TTA review (Jan ‘04).



Autonomous steer-by-wire

The industrial demonstrator

Equipment:Equipment:
•• cameras/imagingcameras/imaging
•• steering actuatorsteering actuator
•• TTA networkTTA network
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•• TTA networkTTA network
•• MPC555 nodesMPC555 nodes



The industrial demonstrator

Autonomous steer-by-wire

71
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– Implementation on a distributed platform:
• General concerns
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Simulink™
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Simulink™

• Designed as a simulation tool, not a programming 
language

• No formal semantics
– Depend on simulation parameters
– No timing modularity
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– No timing modularity
– Typing depends on simulation parameters

We translate only discrete-time Simulink
(with no causality cycles)



From Simulink/Stateflow to Lustre

• Main issues:
– Understand/formalize Simulink/Stateflow

– Solve specific technical problems
• Some are Lustre-specific, many are not
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– Implement
• Keep up with The Mathworks’ changes



A strange Simulink behavior

Sampled
at 2 ms
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Sampled
at 5 ms

With Gain: model rejected by Simulink
Without Gain: model accepted!



Translating Simulink to Lustre

• 3 steps:
– Type inference:

• Find whether signal x is “real” or “integer” or “boolean”

– Clock inference:
• Find whether x is periodic (and its period/phase) or triggered/enabled
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– Block-by-block, bottom-up translation:
• Translate basic blocks (adder, unit delay, transfer function, etc) as 

predefined Lustre nodes
• Translate meta-blocks (subsystems) hierarchically



Simulink type system

• Polymorphic types
– “parametric” polymorphism (e.g., “Unit Delay” block)
– “ad-hoc” polymorphism (e.g., “Adder” block)

• Basic block type signatures:

Constantα α, α ∈ {double, single, int32, int16, …}

Adder α × … × α → α, α ∈ {double, …}

78

• Type-inference algorithm: unification [Milner]
– (In fact simpler since we have no terms)

Relation α × α → boolean, α ∈ {double, …}

Logical Operator boolean × … × boolean → boolean

Disc. Transfer Function double → double

Unit Delay α→ α

Data Type Converterα β→ α



Time in Simulink

• Simulink has two timing mechanisms:
– sample times : (period,phase)

• Can be set in blocks: in-ports, UD, ZOH, DTF, …
• Defines when output of block is updated.
• Can be inherited from inputs or parent system.

– triggers (or “enables”) :
• Set in subsystems
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• Set in subsystems
• Defines when subsystem is “active” (outputs updated).
• The sample times of all children blocks are inherited.

A

B

x
y

z w

s trigger Simulink triggers
=

Lustre clocks



Sample times in Simulink

• Greatest-common divisor (GCD) rule :
– A block fed with inputs with different rates:

2 ms
1 ms

x
z

y
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• Other timing rules, e.g.:
– Insert a unit delay when passing from a “slow” block to a “fast” 

block.

1 ms
3 ms

y



Formalization

• Sample time signatures of basic blocks:
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Sample time inference algorithm

• Sample times = types = terms:
– α (unknown)
– (period,phase) constants, e.g.: (1, 0), (2, 1), etc
– GCD( t1, t2 )

• Terms simplify to a canonical form
– GCD(β, (2,0), (3,0), α) → GCD((1,0), α, β) 
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• Term unification, e.g. :
– From the equations: z = GCD(x,y) and x = z
– We get: x = GCD(x, y)
– Thus: x = GCD(y)
– Thus: x = y = z



Overview of clock inference algorithm

• Infer the sample time of every Simulink signal.

• Check Simulink’s timing rules.

• Create Lustre clocks for Simulink sample times and triggers.
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• Create Lustre clocks for Simulink sample times and triggers.
– Basic clock: GCD of all sample times, e.g., 1ms.
– Other clocks: multiples of basic clock, e.g.
– true false true false L = 2ms.



From Simulink sample times to Lustre clocks

x y

Zero-order hold

1 2
cl_1_2 = make_cl_1_2(); 
y = x when cl_1_2;

cl_1_2 = {true, false, true, false…}
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A

2

3

x

y
z

1

xc = current(x);
yc = current(y);
z  = A(xc, yc);



Stateflow

• Main problem: “unsafe” features
– Non-termination of simulation cycle
– Stack overflow
– Backtracking without “undo”
– Semantics depends on graphical layout
– Other problems:
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– Other problems:
• “early return logic”: returning to an invalid state
• Inter-level transitions
• …



Stateflow problems:
non-terminating loops

• Junction networks:
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Stateflow problems:
stack overflow

• When event is broadcast:
– Recursion and run-to-completion

• Stack overflow:
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Stateflow problems:
backtracking without “undo”
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Stateflow problems:
semantics depends on layout

• “top-to-bottom, left-to-right” rule for states:
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• “12 o’clock” rule for transitions



Stateflow problems:
“early return logic”

• Return to a non-active state:
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A “ safe” subset of Stateflow

• Safe = terminating, bounded-memory, “clean”

• Problem undecidable in general

• Different levels of “safeness”:
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– Static checks (cheap but strict)
– Dynamic verification (heavy but less strict)



A statically safe subset of Stateflow

• Static checks include:
– Absence of multi-segment loops
– Acyclicity of triggering/emitted events
– No assignments in intermediate segments
– Outgoing junction conditions form a cover (implies no deadlocks)
– Outgoing junction conditions are disjoint (implies determinism)
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– Outgoing junction conditions are disjoint (implies determinism)



From Stateflow to Lustre

• Main difficulty:
– Translating state-machines into dataflow

• Approach:
– Encode states with Boolean variables
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– Encode execution order by “dummy” dependencies



Translation to Lustre

• Encoding of states and events as boolean flows
• “mono-clock”

node SetReset0(Set, Reset: bool)
returns (sOff, sOn: bool);
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returns (sOff, sOn: bool);
let
sOff = true ->
if pre sOff and Set then false
else if (pre sOn and Reset) then true
else pre sOff;

sOn = false ->
if pre sOn and Reset then false
else if (pre sOff and Set) then true
else pre sOn;

tel

Off OnSet

Reset



Readings from the Verimag group:

• Overall approach:
– http://www-verimag.imag.fr/~tripakis/papers/lctes03.ps

• Simulink to Lustre: 
– http://www-verimag.imag.fr/~tripakis/papers/acm-tecs.pdf

• Stateflow to Lustre:
– http://www-verimag.imag.fr/~tripakis/papers/emsoft04.pdf

• Multi-task implementations:
– http://www-verimag.imag.fr/~tripakis/papers/acm-tecs07.pdf
– http://www-verimag.imag.fr/TR/TR-2004-12.pdf
– http://www-verimag.imag.fr/~tripakis/papers/emsoft05.pdf
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– http://www-verimag.imag.fr/~tripakis/papers/emsoft05.pdf
– http://www-verimag.imag.fr/~tripakis/papers/emsoft06.pdf

• Adrian’s thesis:
– http://www-verimag.imag.fr/~curic/thesis_AdrianC_11_25.pdf

• Christos’ thesis:
– http://www-verimag.imag.fr/~sofronis/sofronis-phd.pdf

• A tutorial chapter on synchronous programming:
– http://www-verimag.imag.fr/~tripakis/papers/handbook07.pdf



End


