I cadence

Embedded software implementation:
a model-based approach

Stavros Tripakis
Cadence Research Labs
tripakis@cadence.com

Lecture at EE249, Oct 2007

What are these?

= Alpha

= ARM

s Atmel AVR
= Blackfin

n AZGK

s ARC

m Cdx

s ETRAX CRIS

s DIOV
s MeP

HC12
HE/300
IA-32 (xB6)
x86-64

D30y
DSP1exx
FR-30
FR-V

MicroBlaze

|A-64
MaorphoSys
Motarola 6E000
MIPS

[ntel 960
[P2000
M32R
BEHCLL

Mios [l and Mios

PA-RISC

POP-11

PowerPC
REC/M16C/M32C

MCORE
MMIX
MM10200
MMWLO300

FPOP-10

System/390/zSeries
SuperH
SPARC

Motorola 88000
MNS32K

ROMP
Stormyle

MSP430

GCC 4.1 target processors [Wikipedia]

WAX

VER0
X¥tensa
AVR3Z

ZB8000

What is this?

Fron

t-end

A

y

Optimi

zations

Back-end

Structure of GCC [Wikipedia]

Front-end

y

Front ends [edit]

Frontends vary internally, having to produce trees that can be handled by the backend. The parsers are
hand-coded recursive descent parsers.

targeted. Confusingly, the meaning of a tree was somewhat different for different language front-ends,

Optimizations

Back-end

Until recently, the tree representation of the program was not fully independent of the processor being

and front-ends could provide their own tree codes.

In 2005, two new forms of language-independent trees were introduced. These new tree formats are
called GEMERIC and GIMPLE. Parsing is now done by creating temporary language-dependent trees, and
converting them to GENERIC. The so-called "gimplifier” then lowers this more complex form into the
simpler S5A-based GIMPLE form which is the common language for a large number of new powerful
language- and architecture-independent global (function scope) optimizations.

Optimization [edit]

Optimization on trees does not generally fit into what most compiler developers would consider a front end
task, as it is not language dependent and does not involve parsing. GCC developers have given this part
of the compiler the somewhat contradictory name the "middle end.” These optimizations include dead
code elimination, partial redundancy elimination, global value numbering, sparse conditional constant
propagation, and scalar replacement of aggregates. Array dependence based optimizations such as
automatic vectorization are currently being developed.

Each of the language compilers is a separate program that takes in source code and produces assembly
language. All have a common internal structure. A per-language front end parses the source code in that
language and produces an abstract syntax tree (“tree” for short), and a back end converts the trees to
GCC's Register Transfer Language (RTL). Compiler optimizations and static code analysis techniques
(such as FORTIFY_SOURCE[Z] &, a compiler directive which attempts to discover some buffer overflows)
are applied to the code. Finally, assembly language is produced using architecture-specific pattern
matching originally based on an algorithm of Jack Davidson and Chris Fraser.

Design (programming)
VS.
Implementation (compilation)

 Design:
— Focus on function: what should the program do and how to do it

— Focus on correctness: debugging does/should not depend on whether
program runs on Linux/Windows, AMD/Intel

— Focus on readability, extensibility, maintainability, ...: others will come
after you to work on this program

— (Try to) avoid thinking about how to make it run fast (except high-level
decisions, e.g., which data-structure to use)

* Implementation:

— Focus on how to execute the program correctly on a given architecture:
compiler knows the instruction set, programmer does not

— Make it run fast: compiler knows some of that

Embedded software

This is more or less true for “general-purpose”
software...

...but certainly not for embedded software!

— Lots of worries due to limited resources: small memory, little
power, short time to complete task, ...

Wil it ever be?

We believe so.

Model based design: what and why?

Application

desion

.

.

.

.
.

S

e e e e

.
L L
. o .

- -
-
-

-
.

.

impl tation

single-processor

single-task

single-processor
multi-task

multi-processor

TTA

Execution platform

Model based design: benefits and challenges

* Benefits:
— Increase level of abstraction => ease of design
— Abstract from implementation details => platform-independence
— Earlier verification => bugs cheaper to fix
— Design space exploration (at the “algorithmic” level)

— Consistent with history (e.g., of programming languages)
 Challenges:

— High-level languages include powerful features, e.g.,

» Concurrency, synchronous (“O-time”)
computation/communication, ...

— How to implement these features?
Do we even have to?

Model based design — the Verimag approach
(joint work with P. Caspi, C. Sofronis, A. Curic, A . Maignan, at Verimag)

Application

-
design Simulink

[EMSOFT'04]

[EMSOFT’03]
validation
verification

[classic , L
(LCTES'03] [ECRTS’04,EMSOFT'05,’06]

multi-processor single-processor -
TTA multi-task

impl tation
single-processor
single-task

Execution platform

10

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution

— Implementation on a distributed platform:
» General concerns
* Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

o Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

11

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution

— Implementation on a distributed platform:
» General concerns
* Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

o Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

Code generation: single-processor, single-task

 Code that implements a state machine:

Inputs ——

12

—

— outputs

Initialize;

repeat forever
await trigger
read inputs;
compute next state

and outputs;

write outputs;
update state;

end repeat;

Single-processor, single-tasking (1)

One computer, no RTOS (or minimal), one process running
Process has the following structure:

initialize state: preeee——
repeat forever ,i\ cl;

await trigger;

read inputs; B

conput e new state and out puts; -

updat e state; l

wite oquuts; ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ., = Alinputs):
end repeat; - c = C(i nputs);

............ out := B(a, C);

(]
_l
=.

Q
«Q
@D
-
3
Q
<
o
)
o
@D
=.
)
Q.
O
)
-
@D
<
®
-
T
o
b
£70)
®
o,

Compute = “fire” all blocks in order (no cycles are allowed)

e Some major issues:

— Estimate WCET (worst-case execution time)
» “Hot” research topic, some companies also (e.g., Absint, Rapita, ...)

— Check that WCET <= trigger period (or minimum inter-arrival time)

14

Single-processor, single-tasking (2)

e One computer, no RTOS (or minimal), one process running
* Process has the following structure:

Initialize state;
repeat forever
await trigger;
wite (previous) outputs; /* reduce jitter */
read i nputs;
conput e new state and out puts;
updat e st at e;
end repeat;

e Other major issues:
— Move from floating-point to fixed-point arithmetic
— Evaluate the effect of jitter in outputs
— Program size vs. memory (more/less “standard” compiler optimizations)
— Handling causality cycles (dependencies within the same synchronous instant)
— Modular code generation

15

To go further:

e Reinhard von Hanxleden’s course slides:

— http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ws05-06/v-synch/skript.ntml#lecture14

« Pascal Raymond’s course slides (in French):

o “Compiling Esterel” book by Potop-Edwards-Berry
(2007)

16

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution

— Implementation on a distributed platform:
» General concerns
* Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

o Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

Code generation: single-processor, multi-task

e Multiple processes (tasks) running on the same
computer

« Communicating by share memory (+some protocol)
* Real-time operating system (RTOS) handles scheduling

Question: why bother with multi-tasking? (since we could do single-task)

17

18

Code generation: single-processor, multi-task

e Multiple processes (tasks) running on the same
computer

* Real-time operating system (RTOS) handles scheduling:
— Usually fix-priority scheduling:

» Each task has a fixed priority, higher-priority tasks preempt lower-
priority tasks

— Sometimes other scheduling policies
* E.g., EDF = earliest deadline first

e Questions:
— Why bother with single-processor, multi-tasking?
— What are the challenges?

Single-processor, multi-tasking: why bother?

 Why bother?

— For multi-rate applications: blocks running at different rates (triggers)
— Example: block A runs at 10 ms, block B runs at 40 ms

B

| B

|deally - - - - - -

I?

.

19

B is preempted B is preempted

WHAT IF TASKS COMMUNICATE?

20

Single-processor, multi-tasking issues

e Fast-to-slow transition (high-to-low priority) problems:

2 5ec

s
=15 + r=gs | | 1

Foster §Ineer _

Blotk Blotk 1 5e

Task
Time "
1 reg|Ster {D The fuster task {T=1s] tompletes.

@ Higher prioriry preemption ocours,

@ The slower tusk (T=2) resumes und its inputs
hive changed. This lentds to unpredidable resuli.

What would be the standard solution to this?

* Figures are cut-and-pasted from RTW User’s Guide

21

Single-processor, multi-tasking issues

« Fast-to-slow transition (high-to-low priority) problems:

7 Sec
]
~% T=15 r=p¢ | | 1%
MN* H
Fuster i Slowier _
Block i Block 158t
; Task

{D The fuster task {T=1s] tompletes.
@ Higher prioriry preemption ocours,

i @ The slower tusk (T=2) resumes und its inputs
2 registers hive changed. This lentds to unpredidable resuli.

e RTW solution:
— RT block
— High priority
— Low rate

Time

Bottom-line: reader copies value locally when it starts

22

Does it work in general? Is it efficient?

* Not general:
— Limited to periodic (in fact harmonic) arrival times

— Fails for general (e.g., event-triggered) tasks
» See examples later in this talk

* Not efficient:
— Copying large data can take time...

— What if there are many readers? Do they need to keep multiple
local copies of the same data?

23

A better, general solution [ECRTS04, EMSOFT05,06, TECS]

 The Dynamic Buffering Protocol (DBP)
— Synchronous semantics preservation

— General: applicable to any arrival pattern
» Known or unknown
* Time- or event- triggered

— Memory optimal in all cases
— Known worst case buffer requirements (for static allocation)

e Starting point: abstract synchronous model
— Set of tasks
— Independently triggered
— Communicating
— Synchronous (“zero-time”) semantics

24

The model:
an abstraction of Simulink, Lustre, etc.

e A set of communicating tasks
 Time- or event-triggered

o« Zero-time => “freshest” value

The model: semantics

T

LI

—> \ time

26

Execution on a real platform

Execution takes time
Pre-emption occurs

Assumption : schedulability

 When a task arrives, all previous instances have finished execution.

Tl Tl
yd time

Not schedulable

 How to check schedulability? Use scheduling theory!
« (will have to make assumptions on task arrivals)

27

Issues with a “naive” implementation (1)

e Static-priority, T2>T1

LT
|deal: \ \ [
~_ ’
Tl Tl T2
Real: [| i

\/’

(*) “naive” = atomic copy locally when task starts

28

Issues with a “naive” implementation (1)

e Static-priority, T2>T1

Ideal: \ \ [

\/

« Assumption: if reader has higher priority than writer, then there is a
unit-delay (“pre”) between them.

 (RTW makes the same assumption)

29

Issues with a “naive” implementation (2)

ideal semantics H

Q

30

31

Issues with a “naive” implementation (2)

’ Priog > Prig, > Prig;

real implementation H

32

The DBP protocols

« Basic principle:
— “Memorize” (implicitly) the arrival order of tasks

» Special case: one writer/one reader
« Generalizable to one writer/many readers (same data)
* Generalizable to general task graphs

One writer/one reader (1)

33

Low-to-high case:

L keeps a double buffer BJ[O,1 |
Two bits: current |, previous

L writes to: Blcurrent]

H reads from: B[previous]

When L arrives: current := not current
When H arrives: previous := not current

Initially: current = 0, B[O |= B[1]= default

OG0

One writer/one reader (2)

e High-to-low case: : :

— L keeps a double buffer BJ[O,1 |
— Two bits: current , next

— H writes to: B[next]

— L reads from: Blcurrent]

— When L arrives: current := next
— When H arrives: if (current = next) then
next := not next

— Initially: current=next=0, B[O]= B[1 |= default

34

“*hi2low” protocol demonstration

‘!‘ Priog > Prig, > Prig;

+3/1

next

36

“*hi2low” protocol demonstration

0%

Y1

next
current

Priog > Prig, > Prig;

37

“*hi2low” protocol demonstration

¥

Y1 Yo

current next

Priog > Prig, > Prig;

38

“*hi2low” protocol demonstration

d

Y1 Yo

current next

Priog > Prig, > Prig;

Dynamic Buffering Protocol (DBP)

* N, lower priority readers
* N, lower priority readers with unit-delay
M higher priority readers (with unit-delay by default)

e unit-delay a delay to preserve the semantics
— Read the previous input

M higher-priority readers with unic delay
LY
=]

WEiLer

- T
F

N, lower-priority readers Ny lower-priority readers with unit-delay

39

The DBP protocol (1)

e Data structures:

— Buffer array:

— Pointer array:
— Pointer array:
— Two pointers:

B[1..N+2] // stores the real data
H[1..M] // for higher-priority readers
L[1..N] // for lower-priority readers
current, previous

o Writer
— Release:
previous := current
current :=some j [J[1..N+2] such that BJ[j] is “free”
— Execution:

write on B[current]

40

The DBP protocol (2)

« Lower-priority reader (without unit delay)

— Release
if unit-delay L[i] := previous
else L[i] := current
— Execution:

read from BIL[i]]

* Higher-priority reader (with unit delay)
— Release
H[i] := previous
— Execution
read from B[HIJi]]

42

Example of usage of DBP

Yo

v

Y1

\

prev

curr

43

Example of usage of DBP

T 13

Yo Y1 Yo

prev curr

Example of usage of DBP

44

45

Savings in memory

One writer = one reader : 14 buffers

DBP

— T, 2 buffers I R

— T3 4 buffers Vi T e W=
\ — N

— 1, 2 buffers 7T 1.

Total: 8 buffers [\ ()
(O H‘x o ___.I. _4_/;

46

Worst case buffer consumption

« DBP never uses more than N;+N,+2 buffers
— N, lower priority readers
— N, lower priority readers with a unit-delay
— M higher priority readers (only contribute at most 1 buffer)

a7

Optimality

DBP is memory optimal in any arrival execution

Let p be some execution

— Maybeneeded(p,t)
e Used now
* May be used until next execution of the writer

— DBP_used(p,t)
» buffers used by the DBP protocol

Theorem: for all p, t
DBP_used(p,t) [maybeneeded(p,t)

48

Optimality for known arrival pattern

DBP is non-clairvoyant
— Does not know future arrivals of tasks

— => it may keep info for a reader that will not arrive until the next
execution of the writer: redundant

How to make DBP optimal when task arrivals are known?
— E.g.: multi-periodic tasks

Two solutions:

— Dynamic: for every writer, store output only if it will be needed (known
since, readers’ arrivals are known)

— Static: Simulate arrivals tasks until hyper-period (if possible)

Standard time vs. memory trade-off

49

Conclusions and perspectives (part |)

Dynamic Buffering Protocol
— Synchronous semantics preservation

— Applicable to any arrival pattern
» Known or unknown
 Time or event triggered

— Memory optimal in all cases
— Known worst case buffer requirements (for static allocation)

* Relax schedulability assumption

* More platforms (in the model based approach)
— CAN, Flexray, ...

 Implement the protocols and experiment

 BIG QUESTION: how much does all this matter for control???

50

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution
— Implementation on a distributed platform:
» General concerns
* Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

o Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

51

General concerns

 What semantics to preserve?
— Seguence of values? Synchronism? Both? None?

e How to achieve real-time constraints?

 How to distribute computation on the execution nodes?
 How to distribute communication?
 How to solve computation/communication trade-offs?

— E.qg., duplicate computation to avoid communication

e How to achieve fault-tolerance?

« And many, many more:

— Local and end-to-end scheduling, SW architecture, buffer sizing, ...

52

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution

— Implementation on a distributed platform:
» General concerns
e Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

o Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

Kahn Process Networks [G. Kahn, “The semantics of a
simple language for parallel programming”, 1974]

* A network of processes:
— A, B, C, D are processes
- X, Y, U, V, W are channels of the network

 What is a network?
— Point-to-point channels between processes
— Each channel is a lossless, FIFO gueue of unbounded length
— No other means of communication between processes

 Whatis a process?
— A sequential program (could be written in C, C++, etc.)

— Uses “wait” (blocking read) and “send” (non-blocking write)
primitives to receive/send data from/to its input/output channels

53

54

Example of process

Process A(integer in X Y; integer out W
Begi n
| nt eger i;
bool ean b : = true;
while (true) do
I :=1f b then wait(X) else wait(Y);
send i on W
b := not b;
end whil e;
End.

55

Malin results of Kahn

» The behavior of a KPN is deterministic:

— It does not depend on the execution order of processes (modeling
execution speed, transmission delays, ...)

— Behavior = sequences of input/output values of each process
« How to prove it:

— View each channel as carrying a (finite or infinite) sequence of values
— Order sequences by prefix-order

— Set of sequences is then a CPO (bottom is the empty sequence)
— Then:

« Kahn processes are continuous functions in this CPO
» Network is a set of fix-point equations on these functions

» (From continuity) the set of equations has a (unique) least fixpoint
» This least fixpoint is the semantics

Example of fixpoint equations

=
XZ25S
g Rolal

57

Questions — take as homework!

« Kahn processes and continuous functions
— Why are Kahn processes continuous functions?
— What processes would not be continuous?

— E.g., suppose we had a new primitive: wait-either(X,Y) that blocks until
a value is received on EITHER of X, Y. Would processes still be
continuous? Can you think of other primitives that could make
processes non-continuous?

— Are there “good” (continuous, other) functions not expressed as Kahn
processes?

 How to implement synchronous programs on KPN?
— E.qg., take Lustre programs
— Suppose the program is a “flat” network of nodes

— Suppose each Lustre node is to be mapped into a separate Kahn
process

— What next?
— What semantics does your implementation method preserve?

58

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution

— Implementation on a distributed platform:
» General concerns
* Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

o Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

TTA: the Time Triggered Architecture [Kopetz et al]

« A distributed, synchronous, fault-tolerant architecture
— Distributed: set of processor nodes + bus
— Time-triggered:
» static TDMA bus access policy
» clock synchronization

— Fault-tolerant: membership protocol built-in
— Precursor of FlexRay

Mode Mode Node Node
Sengors,
actuators 4™

Application
level

TTPIC TTRIC TTPIC TTPIC TTPIC
communication Controller Controller Controller Controller
subsystem
Channel 0
TTRIC Bus Channal 1

Figuare 2.1: TTA Cluster

60

From Lustreto TTA

The good news:
— TTA is synchronous
— No problems of clock synchronization
— Synchronous semantics of Lustre can be preserved

The bad news: non-trivial resource-allocation problems
— Decomposition of Lustre program into tasks
— Mapping of tasks to processors
— Scheduling of tasks and messages
— Code (and glue code) generation

Auxiliary (difficult) problem:
— WCET analysis

To “help” the compiler: Lustre extensions (“pragmas”) [LCTES’03]
— Real-time primitives (WCET, deadlines, ...)
— Distribution primitives (user-defined mapping)

61

Decomposition

Lustre program:

Decomposition

Lustre program:

Should the
entire node B
be one task?

Decomposition

Lustre program:

Or should there
be two tasks
Bl and B2 ?

Decomposition

Lustre program:

Or some other
grouping ?

65

Decomposition

e Two extremes:

— One task per processor: cheap but too coarse
» perhaps no feasible schedule (pre-emption not allowed).

— One task for every Lustre operator: fine but too costly
* too many tasks, combinatorial explosion.

e Our approach:
— Start with coarse partition.

— Refine when necessary: feedback. Decompositior,

— Feedback: heuristics l
» Split task with largest WCET
 Split task that blocks many others Mapping/SChedanq
* (unpublished, in PhD thesis of Adrian Curic) l

Code generation

66

Scheduling

» Schedule tasks on each processor.
 Schedule messages on the bus.

« Static TDMA schedules (both for bus and processors).
* No pre-emption.

 TTA-specific constraints.

* Problem NP-hard.

* Algorithm:
— Branch-and-bound to fix order of tasks/messages.
— Solve a linear program on leaves to find start times.
— Ensures deadlines are met [possible execution time.

67

Scheduling algorithm

Infeasible
(necessary total order
conditions
violated) LP
i T Ty
proc1 NN N
T, T, ’ T, T, T
procz | ——+—+— NN | N S——
SL SL

bl_lS 1-]] | I] | | L_2|
}_'_V 1 l I I T T I | T | I I

Tool chain

Simulink/Stateflow model (.mdl file)

}
SS2LUS OSEK executables
: i
Lustre program (.lus file) C compiler [=——
= i
Lustre progrgm + annotatic C codt
} il

Lustre modules
Decomposer = , i,k mapping—| C code generator

|
Tasks + constraints
)

Scheduler — Global schedule]
(bus + processors)

feedback

Integrator — Glue code

, - currently manual . . on-going work

68

69

Case studies

e Two case studies from Audi.
— A warning-filtering system:
» 6 levels, 20 subsystems, 113 total blocks.
« 800 lines of generated Lustre code.

— An autonomous steer-by-wire application:
» 6 levels, 18 subsystems, 157 total blocks.
« 387 lines of generated Lustre code.
 Demo-ed in final NEXT TTA review (Jan ‘04).

The industrial demonstrator QLD

Auoil

Autonomous steer-by-wire

BEE uu

Motor

Sensor

Seitenkraft
70

The industrial demonstrator QLD
Auoi

Autonomous steer-by-wire

72

Agenda

e Part | — from synchronous models to implementations
— Single-processor/single-task code generation

— Multi-task code generation:
» the Real-Time Workshop™ solution
» a general solution

— Implementation on a distributed platform:
» General concerns
* Implementation on a Kahn process network
* Implementation on the Time Triggered Architecture

e Part Il — handling Simulink/Stateflow
— Simulink: type/clock inference and translation to Lustre
— Stateflow: static checks and translation to Lustre

73

Simulink™

transmission_comtroller

Gravity Welocity Meloclty ‘;i |
il Position Pasition
-9.31 o i

r
]
U)'—‘

1 Fosition
Velogi g
[15]
"o
IC
Fosition
-0.8

Elzsticity

h
h

74

Simulink™

« Designed as a simulation tool, not a programming
language

 No formal semantics
— Depend on simulation parameters

— No timing modularity
— Typing depends on simulation parameters

We translate only discrete-time _ Simulink
(with no causality cycles)

75

From Simulink/Stateflow to Lustre

e Main issues:
— Understand/formalize Simulink/Stateflow

— Solve specific technical problems
e Some are Lustre-specific, many are not

— Implement
» Keep up with The Mathworks’ changes

A strange Simulink behavior

: | — >
In1 B -
Unit Delay1 *
Sampled . >+ out1
at2 ms
SR
Sampled
atb5 ms * out?

With Gain: model rejected by Simulink
Without Gain: model accepted!

77

Translating Simulink to Lustre

o 3 steps:
— Type inference:
* Find whether signal x is “real” or “integer” or “boolean”

— Clock inference:
* Find whether x is periodic (and its period/phase) or triggered/enabled

— Block-by-block, bottom-up translation:

* Translate basic blocks (adder, unit delay, transfer function, etc) as
predefined Lustre nodes

» Translate meta-blocks (subsystems) hierarchically

78

Simulink type system

Polymorphic types

— “parametric” polymorphism (e.g., “Unit Delay” block)
— *“ad-hoc” polymorphism (e.g., “Adder” block)
Basic block type signatures:

Constant, a, o [0 {double, single, int32, int16, ...}
Adder aXx..xo - a,a{double, ...}
Relation o xa — boolean, a O {double, ...}

Logical Operator

boolean x ... x boolean — boolean

Disc. Transfer Function

double - double

Unit Delay

Data Type Converter,,

B-a

Type-inference algorithm: unification [Milner]
— (In fact simpler since we have no terms)

79

Time In Simulink

e Simulink has two timing mechanisms:

— sample times : (period,phase)
e Can be set in blocks: in-ports, UD, ZOH, DTF, ...
» Defines when output of block is updated.
e Can be inherited from inputs or parent system.
— triggers (or “enables”) :
e Setin subsystems
» Defines when subsystem is “active” (outputs updated).
» The sample times of all children blocks are inherited.

S | trigger

< X
v Vv
>

Z——»B > W

Sample times in Simulink

o Greatest-common divisor (GCD) rule :
— A block fed with inputs with different rates:

X
2 ms Z_.
y 1 ms
3 ms

e Other timing rules, e.qg.:

— Insert a unit delay when passing from a “slow” block to a “fast”
block.

80

81

Formalization

« Sample time signatures of basic blocks:

Output
Math

Switch :
Input :

Discreteg
Discreteg
Triggered
Enabled,

P

— o, € Sample Tvmes
Py %o X en — ged-rule(on, .., an), oy € SampleTimes, i = 1, ...
a % 3 %y — ged-rule(e, 3,7, o, 3,7 € Sample Times
a — o, & Sample Times
o — o, & SampleTimes, 3 = —1
a — 3, a € SampleTimes, 3 € SampleTimes, 3+ —1
XX o — a0 & SampleTimes
a X - X a— o, & SampleTimes

82

Sample time inference algorithm

e Sample times = types = terms:
— d (unknown)
— (period,phase) constants, e.g.: (1, 0), (2, 1), etc
— GCD(ty,t,)

 Terms simplify to a canonical form
— GCD(B, (2,0), (3,0), a) - GCD((1,0), a, B)

 Term unification, e.g. :
— From the equations: z = GCD(x,y) and x = z
— Weget: x = GCD(x, y)
— Thus: x = GCD(y)
— Thus:x=y=z

83

Overview of clock inference algorithm

. Infer the sample time of every Simulink signal.
. Check Simulink’s timing rules.
. Create Lustre clocks for Simulink sample times and triggers.

— Basic clock: GCD of all sample times, e.g., 1ms.
— Other clocks: multiples of basic clock, e.g.
— truefalsetruefalse --- = 2ms.

From Simulink sample times to Lustre clocks

| 1 2 = make cl _1 2();
X when cl 1 2;

A

C
_ 5 y

Zero-order hold

cl 1 2 = {true, false, true, false...}

X A

jf_’ - Xc = current (Xx);
R yc = current(y);

y 1 z = A(Xc, yc);

85

Stateflow

 Main problem: “ " features

Non-termination of simulation cycle
Stack overflow

Backtracking without “undo”

Semantics depends on graphical layout

Other problems:
« “early return logic”: returning to an invalid state
 Inter-level transitions

Stateflow problems:
non-terminating loops

e Junction networks:

| (A E [X<3]{X++}
= =

{x=0}

86

87

Stateflow problems:
stack overflow

When event is broadcast:;

— Recursion and run-to-completion

Stack overflow:

(A/
en: E

Stateflow problems:
backtracking without “undo”

[false] {a+=100}

l{a = O}
true] {a+=1} / [true] {a+=10}

[A

[true] {a+=1000}

Stateflow problems:
semantics depends on layout

« “top-to-bottom, left-to-right” rule for states:

e “12 o’clock” rule for transitions

Stateflow problems:
“early return logic”

 Return to a non-active state:

.W
/

A

R

91

A “ safe” subset of Stateflow

e Safe =terminating, bounded-memory, “clean”
 Problem undecidable in general

» Different levels of “safeness™:
— Static checks (cheap but strict)
— Dynamic verification (heavy but less strict)

92

A statically safe subset of Stateflow

Static checks include:

Absence of multi-segment loops

Acyclicity of triggering/emitted events

No assignments in intermediate segments

Outgoing junction conditions form a cover (implies no deadlocks)
Outgoing junction conditions are disjoint (implies determinism)

93

From Stateflow to Lustre

* Main difficulty:
— Translating state-machines into dataflow

« Approach:
— Encode states with Boolean variables

— Encode execution order by “dummy” dependencies

Translation to Lustre

 Encoding of states and events as boolean flows
e “mono-clock”

node SetReset0(Set, Reset: bool)
returns (sOff, sOn: boo
let
sOff = true ->
if pre sOff and Set then false
else if (pre sOn and Reset) then true

else pre sOff;
Off A Set (on sOn = false ->
if pre sOn and Reset then false
j Reset S else if (pre sOff and Set) then true
else pre sOn;

tel

95

Readings from the Verimag group:

Overall approach:

— http://lwww-verimag.imag.fr/~tripakis/papers/ictes03.ps
Simulink to Lustre:

— http://lwww-verimag.imag.fr/~tripakis/papers/acm-tecs.pdf
Stateflow to Lustre:

— http://lwww-verimag.imag.fr/~tripakis/papers/emsoft04.pdf

Multi-task implementations:

— http://lwww-verimag.imag.fr/~tripakis/papers/acm-tecsO7.pdf
— http://lwww-verimag.imag.fr/TR/TR-2004-12.pdf

— http://lwww-verimag.imag.fr/~tripakis/papers/emsoft05.pdf
— http://lwww-verimag.imag.fr/~tripakis/papers/emsoft06.pdf

Adrian’s thesis:

— http://lwww-verimag.imag.fr/~curic/thesis AdrianC 11 25.pdf
Christos’ thesis:

— http://lwww-verimag.imag.fr/~sofronis/sofronis-phd.pdf

A tutorial chapter on synchronous programming:
— http://www-verimag.imag.fr/~tripakis/papers/handbookQ7.pdf

cadence

En

