
Embedded software implementation:
a model-based approach
Stavros Tripakis
Cadence Research Labs
tripakis@cadence.com

Lecture at EE249, Oct 2007Lecture at EE249, Oct 2007

What are these?

2

GCC 4.1 target processors [Wikipedia]

What is this?

Front-end

Optimizations

3

Back-end

Structure of GCC [Wikipedia]

Front-end

Optimizations

Back-end

4

Back-end

Design (programming)
vs.
implementation (compilation)

• Design:
– Focus on function: what should the program do and how to do it
– Focus on correctness: debugging does/should not depend on whether

program runs on Linux/Windows, AMD/Intel
– Focus on readability, extensibility, maintainability, …: others will come

after you to work on this program

5

after you to work on this program
– (Try to) avoid thinking about how to make it run fast (except high-level

decisions, e.g., which data-structure to use)

• Implementation:
– Focus on how to execute the program correctly on a given architecture:

compiler knows the instruction set, programmer does not
– Make it run fast: compiler knows some of that

Embedded software

• This is more or less true for “general-purpose”
software…

• …but certainly not for embedded software!
– Lots of worries due to limited resources: small memory, little

6

– Lots of worries due to limited resources: small memory, little
power, short time to complete task, …

• Will it ever be?

• We believe so.

Model based design: what and why?

Simulink
Stateflow UML

Application

design …

7

single-processor
single-task single-processor

multi-task
multi-processor

TTA

Execution platform

CAN

implementation

…

Model based design: benefits and challenges

• Benefits:
– Increase level of abstraction => ease of design
– Abstract from implementation details => platform-independence
– Earlier verification => bugs cheaper to fix
– Design space exploration (at the “algorithmic” level)

8

– Consistent with history (e.g., of programming languages)

• Challenges:
– High-level languages include powerful features, e.g.,

• Concurrency, synchronous (“0-time”)
computation/communication,…

– How to implement these features?
• Do we even have to?

Model based design – the Verimag approach
(joint work with P. Caspi, C. Sofronis, A. Curic, A . Maignan, at Verimag)

Simulink
Stateflow UML

Application

design

validation
[EMSOFT’03]

[EMSOFT’04]

…

9

single-processor
single-task single-processor

multi-task
multi-processor

TTA

Lustre

Execution platform

CAN

implementation

validation
verification

[ECRTS’04,EMSOFT’05,’06]
[LCTES’03]

[classic]

…

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

10

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

11

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

Code generation: single-processor, single-task

• Code that implements a state machine:

step function
(transition)

inputs outputs
initialize;
repeat forever

await trigger
read inputs;

12

memory
(state)

read inputs;
compute next state

and outputs;
write outputs;
update state;

end repeat;

Single-processor, single-tasking (1)

• One computer, no RTOS (or minimal), one process running
• Process has the following structure:

initialize state;
repeat forever
await trigger;
read inputs;
compute new state and outputs;
update state;

A

B

C

13

• Trigger may be periodic or event-based
• Compute = “fire” all blocks in order (no cycles are allowed)
• Some major issues:

– Estimate WCET (worst-case execution time)
• “Hot” research topic, some companies also (e.g., AbsInt, Rapita, …)

– Check that WCET <= trigger period (or minimum inter-arrival time)

update state;
write outputs;

end repeat;
a := A(inputs);
c := C(inputs);
out := B(a, c);

Single-processor, single-tasking (2)

• One computer, no RTOS (or minimal), one process running
• Process has the following structure:

initialize state;
repeat forever
await trigger;
write (previous) outputs; /* reduce jitter */
read inputs;
compute new state and outputs;

14

• Other major issues:
– Move from floating-point to fixed-point arithmetic
– Evaluate the effect of jitter in outputs
– Program size vs. memory (more/less “standard” compiler optimizations)
– Handling causality cycles (dependencies within the same synchronous instant)
– Modular code generation
– …

compute new state and outputs;
update state;

end repeat;

To go further:

• Reinhard von Hanxleden’s course slides:
– http://www.informatik.uni-kiel.de/inf/von-Hanxleden/teaching/ws05-06/v-synch/skript.html#lecture14

• Pascal Raymond’s course slides (in French):
– http://www-verimag.imag.fr/~raymond/edu/compil-lustre.pdf

15

– http://www-verimag.imag.fr/~raymond/edu/compil-lustre.pdf

• “Compiling Esterel” book by Potop-Edwards-Berry
(2007)

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

16

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

Code generation: single-processor, multi-task

• Multiple processes (tasks) running on the same
computer

• Communicating by share memory (+some protocol)
• Real-time operating system (RTOS) handles scheduling

Mem

17

RTOS

I/O drivers, etc.

MemT1 T2 T3 …

Question: why bother with multi-tasking? (since we could do single-task)

Code generation: single-processor, multi-task

• Multiple processes (tasks) running on the same
computer

• Real-time operating system (RTOS) handles scheduling:
– Usually fix-priority scheduling:

• Each task has a fixed priority, higher-priority tasks preempt lower-

18

• Each task has a fixed priority, higher-priority tasks preempt lower-
priority tasks

– Sometimes other scheduling policies
• E.g., EDF = earliest deadline first

• Questions:
– Why bother with single-processor, multi-tasking?
– What are the challenges?

B B

Single-processor, multi-tasking: why bother?

• Why bother?
– For multi-rate applications: blocks running at different rates (triggers)
– Example: block A runs at 10 ms, block B runs at 40 ms

19

A B A A A A B

A B… A A A A

A
B

A A A A
B

A

A

AB B… B

Ideally

Single-tasking

Multi-tasking

? ?

B is preempted B is preempted

WHAT IF TASKS COMMUNICATE?

Single-processor, multi-tasking issues

• Fast-to-slow transition (high-to-low priority) problems:

20

1 register

* Figures are cut-and-pasted from RTW User’s Guide

What would be the standard solution to this?

Single-processor, multi-tasking issues

• Fast-to-slow transition (high-to-low priority) problems:

21

• RTW solution:
– RT block
– High priority
– Low rate

2 registers

Bottom-line: reader copies value locally when it starts

Does it work in general? Is it efficient?

• Not general:
– Limited to periodic (in fact harmonic) arrival times
– Fails for general (e.g., event-triggered) tasks

• See examples later in this talk

• Not efficient:

22

• Not efficient:
– Copying large data can take time…
– What if there are many readers? Do they need to keep multiple

local copies of the same data?

A better, general solution [ECRTS’04, EMSOFT’05,’06, TECS]

• The Dynamic Buffering Protocol (DBP)
– Synchronous semantics preservation
– General: applicable to any arrival pattern

• Known or unknown
• Time- or event- triggered

– Memory optimal in all cases
– Known worst case buffer requirements (for static allocation)

23

– Known worst case buffer requirements (for static allocation)

• Starting point: abstract synchronous model
– Set of tasks
– Independently triggered
– Communicating
– Synchronous (“zero-time”) semantics

The model:
an abstraction of Simulink, Lustre, etc.

• A set of communicating tasks
• Time- or event-triggered

24

T1

T3

T2

T4

T5

The model: semantics

• Zero-time => “freshest” value
T1

T

T2

T

T5

25

time

T3T1 T1T3 T2 T4

T3 T4

Execution on a real platform

• Execution takes time
• Pre-emption occurs T1

T

T2

T

T5

26

time

T3T1 T1T3 T2 T4

T1 pre-empts T3

T3 T4

Assumption : schedulability

• When a task arrives, all previous instances have finished execution.

T1 T1

27

• How to check schedulability? Use scheduling theory!
• (will have to make assumptions on task arrivals)

time
Not schedulable

Issues with a “naïve” implementation (1)

• Static-priority, T2 > T1

T1 T2

Ideal:

T1 T2T1

28

Real:

T1 T2T1
T1 is pre-empted.
T2 gets the wrong value.

(*) “naïve” = atomic copy locally when task starts

Issues with a “naïve” implementation (1)

• Static-priority, T2 > T1

T1 T2

Ideal:

T1 T2T1

pre

29

• Assumption: if reader has higher priority than writer, then there is a
unit-delay (“pre”) between them.

• (RTW makes the same assumption)

Issues with a “naïve” implementation (2)

A B

Q

ideal semantics

30

A

Q

B
A

Issues with a “naïve” implementation (2)

Q PrioQ > PrioA > PrioB

A Breal implementation

31

A

Q

B
A

A
Q

A B

ERROR

The DBP protocols

• Basic principle:
– “Memorize” (implicitly) the arrival order of tasks

• Special case: one writer/one reader

32

• Special case: one writer/one reader

• Generalizable to one writer/many readers (same data)

• Generalizable to general task graphs

One writer/one reader (1)

• Low-to-high case:

– L keeps a double buffer B[0,1]

– Two bits: current , previous

– L writes to: B[current]

– H reads from: B[previous]

L H
pre

33

– When L arrives: current := not current

– When H arrives: previous := not current

– Initially: current = 0, B[0]= B[1]= default

One writer/one reader (2)

• High-to-low case:

– L keeps a double buffer B[0,1]

– Two bits: current , next

– H writes to: B[next]

– L reads from: B[current]

H L

34

– When L arrives: current := next

– When H arrives: if (current = next) then

– Initially: current=next=0, B[0]= B[1]= default

next := not next

“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB
A B

35

A

next

A

y1

“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB

Q

A B

36

A

Q

B

A
Q

next

y1

current

“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB

Q

A B

37

A

Q

B A

A
Q

A

current

y1

next

y2

“hi2low” protocol demonstration

Q PrioQ > PrioA > PrioB

Q

A B

38

A

Q

B A

A
Q

A

current

y1

next

y2

B

Dynamic Buffering Protocol (DBP)

• N1 lower priority readers
• N2 lower priority readers with unit-delay
• M higher priority readers (with unit-delay by default)

• unit-delay a delay to preserve the semantics
– Read the previous input

39

– Read the previous input

The DBP protocol (1)

• Data structures:
– Buffer array: B[1..N+2] // stores the real data

– Pointer array: H[1..M] // for higher-priority readers

– Pointer array: L[1..N] // for lower-priority readers

– Two pointers: current, previous

40

• Writer
– Release:

previous := current

current := some j ∈[1..N+2] such that B[j] is “free”

– Execution:
write on B[current]

The DBP protocol (2)

• Lower-priority reader (without unit delay)
– Release

if unit-delay L[i] := previous

else L[i] := current

– Execution:

41

read from B[L[i]]

• Higher-priority reader (with unit delay)
– Release

H[i] := previous

– Execution
read from B[H[i]]

Example of usage of DBP

τw τlow

42

currprev

y0 y1

Example of usage of DBP

τw τlow τw

43

currprev

y0 y1 y2

Example of usage of DBP

τw τlow τw τw

τhi

44

curr prev

y3 y2y1

Savings in memory

• One writer � one reader : 14 buffers

• DBP
– τ1 2 buffers
– τ 4 buffers

45

– τ3 4 buffers
– τ4 2 buffers

• Total: 8 buffers

Worst case buffer consumption

• DBP never uses more than N1+N2+2 buffers
– N1 lower priority readers
– N2 lower priority readers with a unit-delay
– M higher priority readers (only contribute at most 1 buffer)

46

Optimality

• DBP is memory optimal in any arrival execution
• Let ρ be some execution

– Maybeneeded(ρ,t)
• Used now
• May be used until next execution of the writer

– DBP_used(ρ,t)
• buffers used by the DBP protocol

47

• buffers used by the DBP protocol

• Theorem: for all ρ, t
DBP_used(ρ,t) ⊆ maybeneeded(ρ,t)

Optimality for known arrival pattern

• DBP is non-clairvoyant
– Does not know future arrivals of tasks
– => it may keep info for a reader that will not arrive until the next

execution of the writer: redundant

• How to make DBP optimal when task arrivals are known?

48

– E.g.: multi-periodic tasks

• Two solutions:
– Dynamic: for every writer, store output only if it will be needed (known

since, readers’ arrivals are known)
– Static: Simulate arrivals tasks until hyper-period (if possible)

• Standard time vs. memory trade-off

Conclusions and perspectives (part I)

• Dynamic Buffering Protocol
– Synchronous semantics preservation
– Applicable to any arrival pattern

• Known or unknown
• Time or event triggered

– Memory optimal in all cases
– Known worst case buffer requirements (for static allocation)

49

• Relax schedulability assumption
• More platforms (in the model based approach)

– CAN, Flexray, …
• Implement the protocols and experiment

• BIG QUESTION: how much does all this matter for control???

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

50

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

General concerns

• What semantics to preserve?
– Sequence of values? Synchronism? Both? None?

• How to achieve real-time constraints?

• How to distribute computation on the execution nodes?
• How to distribute communication?

51

• How to distribute communication?
• How to solve computation/communication trade-offs?

– E.g., duplicate computation to avoid communication

• How to achieve fault-tolerance?

• And many, many more:
– Local and end-to-end scheduling, SW architecture, buffer sizing, …

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

52

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

Kahn Process Networks [G. Kahn, “The semantics of a
simple language for parallel programming”, 1974]

• A network of processes:
– A, B, C, D are processes
– X, Y, U, V, W are channels of the network

• What is a network?
– Point-to-point channels between processes

A

B

C D

XY

U V

W

53

– Point-to-point channels between processes
– Each channel is a lossless, FIFO queue of unbounded length
– No other means of communication between processes

• What is a process?
– A sequential program (could be written in C, C++, etc.)
– Uses “wait” (blocking read) and “send” (non-blocking write)

primitives to receive/send data from/to its input/output channels

Example of process

A

B

C D

XY

U V
Process A(integer in X, Y; integer out W)
Begin

integer i;

W

54

integer i;
boolean b := true;
while (true) do
i := if b then wait(X) else wait(Y);
send i on W;
b := not b;

end while;
End.

Main results of Kahn

• The behavior of a KPN is deterministic:
– It does not depend on the execution order of processes (modeling

execution speed, transmission delays, …)
– Behavior = sequences of input/output values of each process

• How to prove it:
– View each channel as carrying a (finite or infinite) sequence of values

55

– View each channel as carrying a (finite or infinite) sequence of values
– Order sequences by prefix-order
– Set of sequences is then a CPO (bottom is the empty sequence)
– Then:

• Kahn processes are continuous functions in this CPO
• Network is a set of fix-point equations on these functions
• (From continuity) the set of equations has a (unique) least fixpoint
• This least fixpoint is the semantics

Example of fixpoint equations

A

B

C D

XY

U V

W

56

W = A(X,Y)
(U,V) = B(W)
Y = C(U)
X = D(V)

Questions – take as homework!

• Kahn processes and continuous functions
– Why are Kahn processes continuous functions?
– What processes would not be continuous?
– E.g., suppose we had a new primitive: wait-either(X,Y) that blocks until

a value is received on EITHER of X, Y. Would processes still be
continuous? Can you think of other primitives that could make
processes non-continuous?

– Are there “good” (continuous, other) functions not expressed as Kahn

57

– Are there “good” (continuous, other) functions not expressed as Kahn
processes?

• How to implement synchronous programs on KPN?
– E.g., take Lustre programs
– Suppose the program is a “flat” network of nodes
– Suppose each Lustre node is to be mapped into a separate Kahn

process
– What next?
– What semantics does your implementation method preserve?

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

58

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

TTA: the Time Triggered Architecture [Kopetz et al]

• A distributed, synchronous, fault-tolerant architecture
– Distributed: set of processor nodes + bus

– Time-triggered:
• static TDMA bus access policy

• clock synchronization

– Fault-tolerant: membership protocol built-in

– Precursor of FlexRay

59

From Lustre to TTA

• The good news:
– TTA is synchronous
– No problems of clock synchronization
– Synchronous semantics of Lustre can be preserved

• The bad news: non-trivial resource-allocation problems
– Decomposition of Lustre program into tasks
– Mapping of tasks to processors

60

– Mapping of tasks to processors
– Scheduling of tasks and messages
– Code (and glue code) generation

• Auxiliary (difficult) problem:
– WCET analysis

• To “help” the compiler: Lustre extensions (“pragmas”) [LCTES’03]
– Real-time primitives (WCET, deadlines, …)
– Distribution primitives (user-defined mapping)

Decomposition

Lustre program:

61

Decomposition

Lustre program:

62

Should the
entire node B
be one task?

Decomposition

Lustre program:

63

Or should there
be two tasks
B1 and B2 ?

Decomposition

Lustre program:

64

Or some other
grouping ?

Decomposition

• Two extremes:
– One task per processor: cheap but too coarse

• perhaps no feasible schedule (pre-emption not allowed).

– One task for every Lustre operator: fine but too costly
• too many tasks, combinatorial explosion.

• Our approach:

65

• Our approach:
– Start with coarse partition.
– Refine when necessary: feedback.
– Feedback: heuristics

• Split task with largest WCET
• Split task that blocks many others
• ...
• (unpublished, in PhD thesis of Adrian Curic)

Decomposition

Mapping/Scheduling

Code generation

Scheduling

• Schedule tasks on each processor.
• Schedule messages on the bus.

• Static TDMA schedules (both for bus and processors).
• No pre-emption.
• TTA-specific constraints.
• Problem NP-hard.

66

• Problem NP-hard.

• Algorithm:
– Branch-and-bound to fix order of tasks/messages.
– Solve a linear program on leaves to find start times.
– Ensures deadlines are met ∀ possible execution time.

Scheduling algorithm

T1 → T4, T3 → T5

T4 → T3
T3 → T4

67

T1 → T2

LP

Infeasible
(necessary
conditions
violated)

total order

Tool chain

SS2Lus

Simulink/Stateflow model (.mdl file)

Lustre program (.lus file)

Lustre program + annotations

C compiler

C code

OSEK executables

68

Lustre program + annotations

: currently manual

Decomposer

Scheduler Integrator

C code generator

Tasks + constraints

Global schedule
(bus + processors)

Lustre modules
+ task mapping

Glue code

C code

fe
ed

b
ac

k

: on-going work

Case studies

• Two case studies from Audi.
– A warning-filtering system:

• 6 levels, 20 subsystems, 113 total blocks.
• 800 lines of generated Lustre code.

– An autonomous steer-by-wire application:

69

– An autonomous steer-by-wire application:
• 6 levels, 18 subsystems, 157 total blocks.
• 387 lines of generated Lustre code.
• Demo-ed in final NEXT TTA review (Jan ‘04).

Autonomous steer-by-wire

The industrial demonstrator

Equipment:Equipment:
•• cameras/imagingcameras/imaging
•• steering actuatorsteering actuator
•• TTA networkTTA network

70

•• TTA networkTTA network
•• MPC555 nodesMPC555 nodes

The industrial demonstrator

Autonomous steer-by-wire

71

Agenda

• Part I – from synchronous models to implementations
– Single-processor/single-task code generation
– Multi-task code generation:

• the Real-Time Workshop™ solution
• a general solution

– Implementation on a distributed platform:

72

– Implementation on a distributed platform:
• General concerns
• Implementation on a Kahn process network
• Implementation on the Time Triggered Architecture

• Part II – handling Simulink/Stateflow
– Simulink: type/clock inference and translation to Lustre
– Stateflow: static checks and translation to Lustre

Simulink™

73

Simulink™

• Designed as a simulation tool, not a programming
language

• No formal semantics
– Depend on simulation parameters
– No timing modularity

74

– No timing modularity
– Typing depends on simulation parameters

We translate only discrete-time Simulink
(with no causality cycles)

From Simulink/Stateflow to Lustre

• Main issues:
– Understand/formalize Simulink/Stateflow

– Solve specific technical problems
• Some are Lustre-specific, many are not

75

– Implement
• Keep up with The Mathworks’ changes

A strange Simulink behavior

Sampled
at 2 ms

76

Sampled
at 5 ms

With Gain: model rejected by Simulink
Without Gain: model accepted!

Translating Simulink to Lustre

• 3 steps:
– Type inference:

• Find whether signal x is “real” or “integer” or “boolean”

– Clock inference:
• Find whether x is periodic (and its period/phase) or triggered/enabled

77

– Block-by-block, bottom-up translation:
• Translate basic blocks (adder, unit delay, transfer function, etc) as

predefined Lustre nodes
• Translate meta-blocks (subsystems) hierarchically

Simulink type system

• Polymorphic types
– “parametric” polymorphism (e.g., “Unit Delay” block)
– “ad-hoc” polymorphism (e.g., “Adder” block)

• Basic block type signatures:

Constantα α, α ∈ {double, single, int32, int16, …}

Adder α × … × α → α, α ∈ {double, …}

78

• Type-inference algorithm: unification [Milner]
– (In fact simpler since we have no terms)

Relation α × α → boolean, α ∈ {double, …}

Logical Operator boolean × … × boolean → boolean

Disc. Transfer Function double → double

Unit Delay α→ α

Data Type Converterα β→ α

Time in Simulink

• Simulink has two timing mechanisms:
– sample times : (period,phase)

• Can be set in blocks: in-ports, UD, ZOH, DTF, …
• Defines when output of block is updated.
• Can be inherited from inputs or parent system.

– triggers (or “enables”) :
• Set in subsystems

79

• Set in subsystems
• Defines when subsystem is “active” (outputs updated).
• The sample times of all children blocks are inherited.

A

B

x
y

z w

s trigger Simulink triggers
=

Lustre clocks

Sample times in Simulink

• Greatest-common divisor (GCD) rule :
– A block fed with inputs with different rates:

2 ms
1 ms

x
z

y

80

• Other timing rules, e.g.:
– Insert a unit delay when passing from a “slow” block to a “fast”

block.

1 ms
3 ms

y

Formalization

• Sample time signatures of basic blocks:

81

Sample time inference algorithm

• Sample times = types = terms:
– α (unknown)
– (period,phase) constants, e.g.: (1, 0), (2, 1), etc
– GCD(t1, t2)

• Terms simplify to a canonical form
– GCD(β, (2,0), (3,0), α) → GCD((1,0), α, β)

82

• Term unification, e.g. :
– From the equations: z = GCD(x,y) and x = z
– We get: x = GCD(x, y)
– Thus: x = GCD(y)
– Thus: x = y = z

Overview of clock inference algorithm

• Infer the sample time of every Simulink signal.

• Check Simulink’s timing rules.

• Create Lustre clocks for Simulink sample times and triggers.

83

• Create Lustre clocks for Simulink sample times and triggers.
– Basic clock: GCD of all sample times, e.g., 1ms.
– Other clocks: multiples of basic clock, e.g.
– true false true false L = 2ms.

From Simulink sample times to Lustre clocks

x y

Zero-order hold

1 2
cl_1_2 = make_cl_1_2();
y = x when cl_1_2;

cl_1_2 = {true, false, true, false…}

84

A

2

3

x

y
z

1

xc = current(x);
yc = current(y);
z = A(xc, yc);

Stateflow

• Main problem: “unsafe” features
– Non-termination of simulation cycle
– Stack overflow
– Backtracking without “undo”
– Semantics depends on graphical layout
– Other problems:

85

– Other problems:
• “early return logic”: returning to an invalid state
• Inter-level transitions
• …

Stateflow problems:
non-terminating loops

• Junction networks:

86

Stateflow problems:
stack overflow

• When event is broadcast:
– Recursion and run-to-completion

• Stack overflow:

87

Stateflow problems:
backtracking without “undo”

88

Stateflow problems:
semantics depends on layout

• “top-to-bottom, left-to-right” rule for states:

89

• “12 o’clock” rule for transitions

Stateflow problems:
“early return logic”

• Return to a non-active state:

90

A “ safe” subset of Stateflow

• Safe = terminating, bounded-memory, “clean”

• Problem undecidable in general

• Different levels of “safeness”:

91

– Static checks (cheap but strict)
– Dynamic verification (heavy but less strict)

A statically safe subset of Stateflow

• Static checks include:
– Absence of multi-segment loops
– Acyclicity of triggering/emitted events
– No assignments in intermediate segments
– Outgoing junction conditions form a cover (implies no deadlocks)
– Outgoing junction conditions are disjoint (implies determinism)

92

– Outgoing junction conditions are disjoint (implies determinism)

From Stateflow to Lustre

• Main difficulty:
– Translating state-machines into dataflow

• Approach:
– Encode states with Boolean variables

93

– Encode execution order by “dummy” dependencies

Translation to Lustre

• Encoding of states and events as boolean flows
• “mono-clock”

node SetReset0(Set, Reset: bool)
returns (sOff, sOn: bool);

94

returns (sOff, sOn: bool);
let
sOff = true ->
if pre sOff and Set then false
else if (pre sOn and Reset) then true
else pre sOff;

sOn = false ->
if pre sOn and Reset then false
else if (pre sOff and Set) then true
else pre sOn;

tel

Off OnSet

Reset

Readings from the Verimag group:

• Overall approach:
– http://www-verimag.imag.fr/~tripakis/papers/lctes03.ps

• Simulink to Lustre:
– http://www-verimag.imag.fr/~tripakis/papers/acm-tecs.pdf

• Stateflow to Lustre:
– http://www-verimag.imag.fr/~tripakis/papers/emsoft04.pdf

• Multi-task implementations:
– http://www-verimag.imag.fr/~tripakis/papers/acm-tecs07.pdf
– http://www-verimag.imag.fr/TR/TR-2004-12.pdf
– http://www-verimag.imag.fr/~tripakis/papers/emsoft05.pdf

95

– http://www-verimag.imag.fr/~tripakis/papers/emsoft05.pdf
– http://www-verimag.imag.fr/~tripakis/papers/emsoft06.pdf

• Adrian’s thesis:
– http://www-verimag.imag.fr/~curic/thesis_AdrianC_11_25.pdf

• Christos’ thesis:
– http://www-verimag.imag.fr/~sofronis/sofronis-phd.pdf

• A tutorial chapter on synchronous programming:
– http://www-verimag.imag.fr/~tripakis/papers/handbook07.pdf

End

