Outline

Part 3: Models of Computation
- FSMs
Discrete Event Systems
CFSMs
Data Flow Models
Petri Nets
The Tagged Signal Model

Data-flow networks

A bit of history
Syntax and semantics
— actors, tokens and firings
Scheduling of Static Data-flow
— static scheduling
— code generation
— buffer sizing
Other Data-flow models
— Boolean Data-flow

— Dynamic Data-flow

EE249Fallo7

EE249Fallo7

Page 1

Data-flow networks

Powerful formalism for data-dominated system specification
Partially-ordered model (no over-specification)
Deterministic execution independent of scheduling

Used for

— simulation

— scheduling

— memory allocation

— code generation

for Digital Signal Processors (HW and SW)

EE249Fallo7

A bit of history

» Karp computation graphs (‘66): seminal work
» Kahn process networks (‘58): formal model

* Dennis Data-flow networks (‘75): programming language for MIT
DF machine

* Several recent implementations
— graphical:
— Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
— SPW (Cadence), COSSAP (Synopsys)
— textual:
— Silage (UCB, Mentor)
— Lucid, Haskell

EE249Fallo7

Page 2

Data-flow network

« A Data-flow network is a collection of functional nodes which
are connected and communicate over unbounded FIFO queues

* Nodes are commonly called actors

* The bits of information that are communicated over the queues
are commonly called tokens

EE249Fallo7

Intuitive semantics

* (Often stateless) actors perform computation

* Unbounded FIFOs perform communication via sequences of
tokens carrying values

— integer, float, fixed point
— matrix of integer, float, fixed point
— image of pixels
* State implemented as self-loop
» Determinacy:
— unigue output sequences given unique input sequences
— Sufficient condition: blocking read

- (process cannot test input queues for emptiness)

EE249Fallo7

Page 3

Intuitive semantics

At each time, one actor is fired

When firing, actors consume input tokens and produce output

tokens

Actors can be fired only if there are enough tokens in the input

queues

Intuitive semantics

« Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

* €2

i(-1)

Page 4

Intuitive semantics

* Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Intuitive semantics

» Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Page 5

Intuitive semantics

« Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Intuitive semantics

» Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

i(-1)

Page 6

Intuitive semantics

« Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Intuitive semantics

» Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Page 7

Intuitive semantics

« Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Intuitive semantics

« Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

Page 8

Intuitive semantics

» Example: FIR filter
— single input sequence i(n)
— single output sequence o(n)
—o(n)=cli(n) +c2i(n-1)

@ * c2

Questions

* Does the order in which actors are fired affect the final result?

* Does it affect the “operation” of the network in any way?

* Go to Radio Shack and ask for an unbounded queue!!

EE249Fall07

Page 9

Formal semantics: sequences

Actors operate from a sequence of input tokens to a sequence of
output tokens

Let tokens be noted by x,, x,, X5, etc...
A sequence of tokens is defined as
X=Xy, X, X3, -]

Over the execution of the network, each queue will grow a particular
sequence of tokens

In general, we consider the actors mathematically as functions from
sequences to sequences (not from tokens to tokens)

EE249Fallo7

Ordering of sequences

Let X; and X, be two sequences of tokens.

We say that X, is less than X, if and only if (by definition) X, is
an initial segment of X,

Homework: prove that the relation so defined is a partial order
(reflexive, antisymmetric and transitive)

This is also called the prefix order
Example: [X3, X,]1 <=[Xq, X5, X3]

Example: [Xx;, X,] and [X, X3, X,] are incomparable

EE249Fallo7

Page 10

Chains of sequences

Consider the set S of all finite and infinite sequences of tokens
This set is partially ordered by the prefix order

A subset C of S is called a chain iff all pairs of elements of C
are comparable

If C is a chain, then it must be a linear order inside S
(otherwise, why call it chain?)

Example: {[X;], [X4, X51, [X4, X5, X3 1, ... }is a chain

Example: {[X; 1, [Xq, X51, [X, X531, ... }is not a chain

EE249Fallo7

(Least) Upper Bound

Given a subset Y of S, an upper bound of Y is an element z of
S such that z is larger than all elements of Y

Consider now the set Z (subset of S) of all the upper bounds of
Y

If Z has a least element u, then u is called the least upper
bound (lub) of Y

The least upper bound, if it exists, is unique

Note: u might not be in Y (if it is, then it is the largest value of Y)

EE249Fallo7

Page 11

Complete Partial Order

Every chain in S has a least upper bound
Because of this property, S is called a Complete Partial Order

Notation: if C is a chain, we indicate the least upper bound of C
by lub(C)

Note: the least upper bound may be thought of as the limit of
the chain

EE249Fallo7

Processes

» Process: function from a p-tuple of sequences to a g-tuple of
sequences

F . SP-> Sd
» Tuples have the induced point-wise order:

Y: (yl’ ayp)1 Y, = (y,l’ ly,p) in SP :Y <= Y' Iff yi <= y,i
foralll<=i<=p

» Given a chain C in SP, F(C) may or may not be a chain in S

» We are interested in conditions that make that true

EE249Fallo7

Page 12

Continuity and Monotonicity

Continuity: F is continuous iff (by definition) for all chains C, lub(F(C)) exists
and

F(lub(C)=Ilub(F(C))
Similar to continuity in analysis using limits

Monotonicity: F is monotonic iff (by definition) for all pairs X, X’
X<=X=>F(X)<=F(X")

Continuity implies monotonicity

— intuitively, outputs cannot be “withdrawn” once they have been produced

— timeless causality. F transforms chains into chains

EE249Fallo7

Least Fixed Point semantics

Let X be the set of all sequences

A network is a mapping F from the sequences to the
sequences

X=F(X 1)

The behavior of the network is defined as the unique least fixed
point of the equation

If F is continuous then the least fixed point exists LFP = LUB({
Fr(L,1):n>=0})

EE249Fallo7

Page 13

From Kahn networks to Data Flow networks

» Each process becomes an actor: set of pairs of
— firing rule
(number of required tokens on inputs)
— function

(including number of consumed and produced tokens)

» Formally shown to be equivalent, but actors with firing are
more intuitive

» Mutually exclusive firing rules imply monotonicity

» Generally simplified to blocking read

EE249Fall07

Examples of Data Flow actors

» SDF: Synchronous (or, better, Static) Data Flow

— fixed input and output tokens

1
=0 e ®
1 1024 U 1024 10 Ul

 BDF: Boolean Data Flow

— control token determines consumed and produced tokens

Page 14

Static scheduling of DF

Key property of DF networks: output sequences do not depend on time of
firing of actors
SDF networks can be statically scheduled at compile-time
— execute an actor when it is known to be fireable
— no overhead due to sequencing of concurrency
— static buffer sizing
Different schedules yield different
— code size
— buffer size

— pipeline utilization

EE249Fallo7

Static scheduling of SDF

Based only on process graph (ignores functionality)
Network state: number of tokens in FIFOs
Objective: find schedule that is valid, i.e.:

— admissible
(only fires actors when fireable)
— periodic
(brings network back to initial state firing each actor at least once)

Optimize cost function over admissible schedules

EE249Fallo7

Page 15

Balance equations

» Number of produced tokens must equal number of consumed tokens on
every edge

* Repetitions (or firing) vector vg of schedule S: number of firings of each
actorin S

* Vs(A) N, =vs(B) g

must be satisfied for each edge

EE249Fall07

Balance equations

< Balance for each edge:
- 3vg(A)-vg(B)=0
- Vg(B) - vg(C) =0
- 2Vg(A)-vg(C) =0
- 2Vg(A)-vg(C) =0

EE249Fall07

Page 16

Balance equations

* Mvg=0
iff S is periodic

¢ Full rank (as in this case)

— no non-zero solution
— no periodic schedule

(too many tokens accumulate on A->B or B->C)

EE249Fallo7

Balance equations

.
\\J
N
=y
(Y
Il
N O DN
O =
1 1
—_ =

Non-full rank

— infinite solutions exist (linear space of dimension 1)

Any multiple of g =|1 2 2|T satisfies the balance equations

ABCBC and ABBCC are minimal valid schedules
ABABBCBCCC is non-minimal valid schedule

EE249Fallo7

Page 17

Static SDF scheduling

Main SDF scheduling theorem (Lee ‘86):

— A connected SDF graph with n actors has a periodic schedule iff its
topology matrix M has rank n-1

— If M has rank n-1 then there exists a unique smallest integer solution g to
Mg=0

Rank must be at least n-1 because we need at least n-1 edges
(connected-ness), providing each a linearly independent row

Admissibility is not guaranteed, and depends on initial tokens on
cycles

EE249Fallo7

Admissibility of schedules

* No admissible schedule:
BACBA, then deadlock...

« Adding one token (delay) on A->C makes
BACBACBA valid

* Making a periodic schedule admissible is always possible, but
changes specification...

EE249Fallo7

Page 18

Admissibility of schedules

» Adding initial token changes FIR order

EE249Fall07

From repetition vector to schedule

Repeatedly schedule fireable actors up to number of times in
repetition vector

g=]1 2 2|

Can find either ABCBC or ABBCC

If deadlock before original state, no valid schedule exists (Lee ‘86)

EE249Fall07

Page 19

From schedule to implementation

» Static scheduling used for:

— behavioral simulation of DF (extremely efficient)

— code generation for DSP

— HW synthesis (Cathedral by IMEC, Lager by UCB, ...)
* Issues in code generation

— execution speed (pipelining, vectorization)

— code size minimization

— data memory size minimization (allocation to FIFOS)

— processor or functional unit allocation

EE249Fallo7

Compilation optimization

Assumption: code stitching
(chaining custom code for each actor)
More efficient than C compiler for DSP
Comparable to hand-coding in some cases
Explicit parallelism, no artificial control dependencies

Main problem: memory and processor/FU allocation depends
on scheduling, and vice-versa

EE249Fallo7

Page 20

Code size minimization

» Assumptions (based on DSP architecture):
— subroutine calls expensive
— fixed iteration loops are cheap
(“zero-overhead loops”)
» Absolute optimum: single appearance schedule
e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
— may or may not exist for an SDF graph...

— buffer minimization relative to single appearance schedules

(Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)

Buffer size minimization

Assumption: no buffer sharing

q=|100 100 10 1|
Valid SAS: (100 A) (100 B) (10 C) D

— requires 210 units of buffer area
Better (factored) SAS: (10 (10 A) (10B) C) D

— requires 30 units of buffer areas, but...
— requires 21 loop initiations per period (instead of 3)

EE249Fallo7

EE249Fallo7

Page 21

Dynamic scheduling of DF

« SDF is limited in modeling power
— no run-time choice
— cannot implement Gaussian elimination with pivoting
» More general DF is too powerful

— non-Static DF is Turing-complete (Buck ‘93)
— bounded-memory scheduling is not always possible
« BDF: semi-static scheduling of special “patterns”
— if-then-else
— repeat-until, do-while
* General case: thread-based dynamic scheduling
— (Parks ‘96: may not terminate, but never fails if feasible)

EE249Fall07

Example of Boolean DF

» Compute absolute value of average of h samples

Page 22

Example of general DF

« Merge streams of multiples of 2 and 3 in order (removing duplicates)

a=get(A)
b = get (B)
forever {
if (a > b) {
put (O, a)
a=get(A)
} else if (a <Db) {
put (O, b)
b = get (B)
} else {
put (O, a)
a=get(A)
e Deterministic merge b = get (B)

(no “peeking”)

Summary of DF networks

« Advantages:
— Easy to use (graphical languages)
— Powerful algorithms for
— verification (fast behavioral simulation)
— synthesis (scheduling and allocation)
— Explicit concurrency
« Disadvantages:
— Efficient synthesis only for restricted models
— (no input or output choice)

— Cannot describe reactive control (blocking read)

EE249Fall07

Page 23

Outline

Part 3: Models of Computation

FSMs

Discrete Event Systems
CFSMs

Data Flow Models

Petri Nets

The Tagged Signal Model

EE249Fallo7

Page 24

