Outline

- Part 3: Models of Computation
- FSMs
- Discrete Event Systems
- CFSMs
- Data Flow Models
- Petri Nets
- The Tagged Signal Model

Data-flow networks

- A bit of history
- Syntax and semantics
- actors, tokens and firings
- Scheduling of Static Data-flow
- static scheduling
- code generation
- buffer sizing
- Other Data-flow models
- Boolean Data-flow
- Dynamic Data-flow

Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
- simulation
- scheduling
- memory allocation
- code generation
for Digital Signal Processors (HW and SW)

A bit of history

- Karp computation graphs ('66): seminal work
- Kahn process networks ('58): formal model
- Dennis Data-flow networks ('75): programming language for MIT DF machine
- Several recent implementations
- graphical:
- Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
- SPW (Cadence), COSSAP (Synopsys)
- textual:
- Silage (UCB, Mentor)
- Lucid, Haskell

Data-flow network

- A Data-flow network is a collection of functional nodes which are connected and communicate over unbounded FIFO queues
- Nodes are commonly called actors
- The bits of information that are communicated over the queues are commonly called tokens

Intuitive semantics

- (Often stateless) actors perform computation
- Unbounded FIFOs perform communication via sequences of tokens carrying values
- integer, float, fixed point
- matrix of integer, float, fixed point
- image of pixels
- State implemented as self-loop
- Determinacy:
- unique output sequences given unique input sequences
- Sufficient condition: blocking read
- (process cannot test input queues for emptiness)

Intuitive semantics

- At each time, one actor is fired
- When firing, actors consume input tokens and produce output tokens
- Actors can be fired only if there are enough tokens in the input queues

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-o(n)=c 1 i(n)+c 2 i(n-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence $i(n)$
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-o(n)=c 1 i(n)+c 2 i(n-1)$

Intuitive semantics

- Example: FIR filter
- single input sequence i(n)
- single output sequence o(n)
$-\mathrm{o}(\mathrm{n})=\mathrm{c} 1 \mathrm{i}(\mathrm{n})+\mathrm{c} 2 \mathrm{i}(\mathrm{n}-1)$

Questions

- Does the order in which actors are fired affect the final result?
- Does it affect the "operation" of the network in any way?
- Go to Radio Shack and ask for an unbounded queue!!

Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens
- Let tokens be noted by x_{1}, x_{2}, x_{3}, etc...
- A sequence of tokens is defined as

$$
X=\left[x_{1}, x_{2}, x_{3}, \ldots\right]
$$

- Over the execution of the network, each queue will grow a particular sequence of tokens
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens)

Ordering of sequences

- Let X_{1} and X_{2} be two sequences of tokens.
- We say that X_{1} is less than X_{2} if and only if (by definition) X_{1} is an initial segment of X_{2}
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive)
- This is also called the prefix order
- Example: $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]<=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right]$
- Example: [$\mathrm{x}_{1}, \mathrm{x}_{2}$] and $\left[\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{4}\right.$] are incomparable

Chains of sequences

- Consider the set S of all finite and infinite sequences of tokens
- This set is partially ordered by the prefix order
- A subset C of S is called a chain iff all pairs of elements of C are comparable
- If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)
- Example: $\left\{\left[x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{1}, x_{2}, x_{3}\right], \ldots\right\}$ is a chain

Example: $\left\{\left[x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right], \ldots\right\}$ is not a chain

(Least) Upper Bound

- Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y
- Consider now the set Z (subset of S) of all the upper bounds of Y
- If Z has a least element u, then u is called the least upper bound (lub) of Y
- The least upper bound, if it exists, is unique
- Note: u might not be in Y (if it is, then it is the largest value of Y)

Complete Partial Order

- Every chain in S has a least upper bound
- Because of this property, S is called a Complete Partial Order
- Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
- Note: the least upper bound may be thought of as the limit of the chain

Processes

- Process: function from a p-tuple of sequences to a q-tuple of sequences

```
F : Sp -> Sq
```

- Tuples have the induced point-wise order:
$\mathrm{Y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{p}}\right), \mathrm{Y}^{\prime}=\left(\mathrm{y}_{1}^{\prime}, \ldots, \mathrm{y}_{\mathrm{p}}^{\prime}\right)$ in $\mathrm{S}^{p}: \mathrm{Y}<=\mathrm{Y}^{\prime}$ iff $\mathrm{y}_{\mathrm{i}}<=\mathrm{y}_{\mathrm{i}}^{\prime}$ for all $1<=\mathrm{i}<=\mathrm{p}$
- Given a chain C in $\mathrm{S}^{p}, F(\mathrm{C})$ may or may not be a chain in S^{q}
- We are interested in conditions that make that true

Continuity and Monotonicity

- Continuity: F is continuous iff (by definition) for all chains $C, \operatorname{lub}(F(C)$) exists and

$$
F(\operatorname{lub}(C)=\operatorname{lub}(F(C))
$$

- Similar to continuity in analysis using limits
- Monotonicity: F is monotonic iff (by definition) for all pairs X, X '

$$
X<=X^{\prime}=>F(X)<=F\left(X^{\prime}\right)
$$

- Continuity implies monotonicity
- intuitively, outputs cannot be "withdrawn" once they have been produced
- timeless causality. F transforms chains into chains

Least Fixed Point semantics

- Let X be the set of all sequences
- A network is a mapping F from the sequences to the sequences

$$
X=F(X, I)
$$

- The behavior of the network is defined as the unique least fixed point of the equation
- If F is continuous then the least fixed point exists LFP = LUB(\{ $\left.\mathrm{F}^{\mathrm{n}}(\mathrm{L}, \mathrm{I}): \mathrm{n}>=0\right\}$)

From Kahn networks to Data Flow networks

- Each process becomes an actor: set of pairs of
- firing rule
(number of required tokens on inputs)
- function
(including number of consumed and produced tokens)
- Formally shown to be equivalent, but actors with firing are more intuitive
- Mutually exclusive firing rules imply monotonicity
- Generally simplified to blocking read

Examples of Data Flow actors

- SDF: Synchronous (or, better, Static) Data Flow
- fixed input and output tokens

- BDF: Boolean Data Flow
- control token determines consumed and produced tokens

Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors
- SDF networks can be statically scheduled at compile-time
- execute an actor when it is known to be fireable
- no overhead due to sequencing of concurrency
- static buffer sizing
- Different schedules yield different
- code size
- buffer size
- pipeline utilization

Static scheduling of SDF

- Based only on process graph (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is valid, i.e.:
- admissible
(only fires actors when fireable)
- periodic
(brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules

Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_{S} of schedule S : number of firings of each actor in S
- $\mathrm{v}_{\mathrm{S}}(\mathrm{A}) \mathrm{n}_{\mathrm{p}}=\mathrm{v}_{\mathrm{S}}(\mathrm{B}) \mathrm{n}_{\mathrm{c}}$
must be satisfied for each edge

Balance equations

- Balance for each edge:
$-3 \mathrm{v}_{\mathrm{S}}(\mathrm{A})-\mathrm{v}_{\mathrm{S}}(\mathrm{B})=0$
$-v_{S}(B)-v_{S}(C)=0$
$-2 \mathrm{v}_{\mathrm{S}}(\mathrm{A})-\mathrm{V}_{\mathrm{S}}(\mathrm{C})=0$
$-2 v_{S}(A)-v_{S}(C)=0$

Balance equations

$$
M=\left|\begin{array}{ccc}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{array}\right|
$$

- $M v_{S}=0$
iff S is periodic
- Full rank (as in this case)
- no non-zero solution
- no periodic schedule
(too many tokens accumulate on $\mathrm{A}->\mathrm{B}$ or $\mathrm{B}->\mathrm{C}$)

Balance equations

- Non-full rank
- infinite solutions exist (linear space of dimension 1)
- Any multiple of $q=\left|\begin{array}{lll}1 & 2 & 2\end{array}\right|^{\top}$ satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCC is non-minimal valid schedule

Static SDF scheduling

- Main SDF scheduling theorem (Lee '86):
- A connected SDF graph with n actors has a periodic schedule iff its topology matrix M has rank $n-1$
- If M has rank $n-1$ then there exists a unique smallest integer solution q to

$$
M q=0
$$

- Rank must be at least $n-1$ because we need at least $n-1$ edges (connected-ness), providing each a linearly independent row
- Admissibility is not guaranteed, and depends on initial tokens on cycles

Admissibility of schedules

- No admissible schedule:

BACBA, then deadlock...

- Adding one token (delay) on A->C makes

BACBACBA valid

- Making a periodic schedule admissible is always possible, but changes specification...

Admissibility of schedules

- Adding initial token changes FIR order

From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector

$$
q=\left.\begin{array}{lll}
1 & 2 & 2
\end{array}\right|^{\top}
$$

- Can find either $A B C B C$ or $A B B C C$

If deadlock before original state, no valid schedule exists (Lee '86)

From schedule to implementation

- Static scheduling used for:
- behavioral simulation of DF (extremely efficient)
- code generation for DSP
- HW synthesis (Cathedral by IMEC, Lager by UCB, ...)
- Issues in code generation
- execution speed (pipelining, vectorization)
- code size minimization
- data memory size minimization (allocation to FIFOs)
- processor or functional unit allocation

Compilation optimization

- Assumption: code stitching (chaining custom code for each actor)
- More efficient than C compiler for DSP
- Comparable to hand-coding in some cases
- Explicit parallelism, no artificial control dependencies
- Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa

Code size minimization

- Assumptions (based on DSP architecture):
- subroutine calls expensive
- fixed iteration loops are cheap
("zero-overhead loops")
- Absolute optimum: single appearance schedule
e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
- may or may not exist for an SDF graph..
- buffer minimization relative to single appearance schedules
(Bhattacharyya '94, Lauwereins '96, Murthy '97)

Buffer size minimization

- Assumption: no buffer sharing
- Example:
 $\left.\mathrm{q}=\left\lvert\, \begin{array}{lll}100 & 100 & 10\end{array}\right.\right]^{\top}$
- Valid SAS: (100 A) (100 B) (10 C) D
- requires 210 units of buffer area
- Better (factored) SAS: (10 (10 A) (10 B) C) D
- requires 30 units of buffer areas, but..
- requires 21 loop initiations per period (instead of 3)

Dynamic scheduling of DF

- SDF is limited in modeling power
- no run-time choice
- cannot implement Gaussian elimination with pivoting
- More general DF is too powerful
- non-Static DF is Turing-complete (Buck '93)
- bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special "patterns"
- if-then-else
- repeat-until, do-while
- General case: thread-based dynamic scheduling
- (Parks '96: may not terminate, but never fails if feasible)

Example of Boolean DF

- Compute absolute value of average of n samples

Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

- Deterministic merge
(no "peeking")
$\mathrm{a}=\operatorname{get}(\mathrm{A})$
$b=\operatorname{get}(B)$
forever \{
if $(a>b)\{$
put (O, a)
$\mathrm{a}=\operatorname{get}(\mathrm{A})$
\} else if $(a<b)$ \{
put (O, b)
$b=\operatorname{get}(B)$
\} else \{
put (O, a)
$\mathrm{a}=\operatorname{get}(\mathrm{A})$
$b=\operatorname{get}(B)$
\}

Summary of DF networks

- Advantages:
- Easy to use (graphical languages)
- Powerful algorithms for
- verification (fast behavioral simulation)
- synthesis (scheduling and allocation)
- Explicit concurrency
- Disadvantages:
- Efficient Synthesis only for restricted models
- (no input or output choice)
- Cannot describe reactive control (blocking read)

Outline

- Part 3: Models of Computation
- FSMs
- Discrete Event Systems
- CFSMs
- Data Flow Models
- Petri Nets
- The Tagged Signal Model

